尊敬的 微信汇率:1円 ≈ 0.046166 元 支付宝汇率:1円 ≈ 0.046257元 [退出登录]
SlideShare a Scribd company logo
Software Processes
1Software Processes
The software process
 A structured set of activities required to develop a
software system.
 Many different software processes but all involve:
 Specification – defining what the system should do;
 Design and implementation – defining the organization of the
system and implementing the system;
 Validation – checking that it does what the customer wants;
 Evolution – changing the system in response to changing
customer needs.
 A software process model is an abstract representation
of a process. It presents a description of a process from
some particular perspective.
2Chapter 2 Software Processes
Software process descriptions
 When we describe and discuss processes, we usually
talk about the activities in these processes such as
specifying a data model, designing a user interface, etc.
and the ordering of these activities.
 Process descriptions may also include:
 Products, which are the outcomes of a process activity;
 Roles, which reflect the responsibilities of the people involved in
the process;
 Pre- and post-conditions, which are statements that are true
before and after a process activity has been enacted or a
product produced.
3Software Processes
Plan-driven and agile processes
 Plan-driven processes are processes where all of the
process activities are planned in advance and progress
is measured against this plan.
 In agile processes, planning is incremental and it is
easier to change the process to reflect changing
customer requirements.
 In practice, most practical processes include elements of
both plan-driven and agile approaches.
 There are no right or wrong software processes.
4Software Processes
Software process models
 The waterfall model
 Plan-driven model. Separate and distinct phases of specification
and development.
 Incremental development
 Specification, development and validation are interleaved. May
be plan-driven or agile.
 Reuse-oriented software engineering
 The system is assembled from existing components. May be
plan-driven or agile.
 In practice, most large systems are developed using a
process that incorporates elements from all of these
models.
5Software Processes
The waterfall model
6Software Processes
Waterfall model phases
 There are separate identified phases in the waterfall
model:
 Requirements analysis and definition
 System and software design
 Implementation and unit testing
 Integration and system testing
 Operation and maintenance
 The main drawback of the waterfall model is the difficulty
of accommodating change after the process is
underway. In principle, a phase has to be complete
before moving onto the next phase.
7Software Processes
Waterfall model problems
 Inflexible partitioning of the project into distinct stages
makes it difficult to respond to changing customer
requirements.
 Therefore, this model is only appropriate when the requirements
are well-understood and changes will be fairly limited during the
design process.
 Few business systems have stable requirements.
 The waterfall model is mostly used for large systems
engineering projects where a system is developed at
several sites.
 In those circumstances, the plan-driven nature of the waterfall
model helps coordinate the work.
8Software Processes
Incremental development
9Software Processes
Incremental development benefits
 The cost of accommodating changing customer
requirements is reduced.
 The amount of analysis and documentation that has to be
redone is much less than is required with the waterfall model.
 It is easier to get customer feedback on the development
work that has been done.
 Customers can comment on demonstrations of the software and
see how much has been implemented.
 More rapid delivery and deployment of useful software to
the customer is possible.
 Customers are able to use and gain value from the software
earlier than is possible with a waterfall process.
10Software Processes
Incremental development problems
 The process is not visible.
 Managers need regular deliverables to measure progress. If
systems are developed quickly, it is not cost-effective to produce
documents that reflect every version of the system.
 System structure tends to degrade as new increments
are added.
 Unless time and money is spent on refactoring to improve the
software, regular change tends to corrupt its structure.
Incorporating further software changes becomes increasingly
difficult and costly.
11Software Processes
Reuse-oriented software engineering
 Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems.
 Process stages
 Component analysis;
 Requirements modification;
 System design with reuse;
 Development and integration.
 Reuse is now the standard approach for building many
types of business system
 Reuse covered in more depth in Chapter 16.
12Software Processes
Reuse-oriented software engineering
13Software Processes
Types of software component
 Web services that are developed according to service
standards and which are available for remote invocation.
 Collections of objects that are developed as a package
to be integrated with a component framework such as
.NET or J2EE.
 Stand-alone software systems (COTS) that are
configured for use in a particular environment.
14Software Processes
Process activities
 Real software processes are inter-leaved sequences of
technical, collaborative and managerial activities with the
overall goal of specifying, designing, implementing and
testing a software system.
 The four basic process activities of specification,
development, validation and evolution are organized
differently in different development processes. In the
waterfall model, they are organized in sequence,
whereas in incremental development they are inter-
leaved.
15Software Processes
Software specification
 The process of establishing what services are required
and the constraints on the system’s operation and
development.
 Requirements engineering process
 Feasibility study
• Is it technically and financially feasible to build the system?
 Requirements elicitation and analysis
• What do the system stakeholders require or expect from the system?
 Requirements specification
• Defining the requirements in detail
 Requirements validation
• Checking the validity of the requirements
16Software Processes
The requirements engineering process
17Software Processes
Software design and implementation
 The process of converting the system specification into
an executable system.
 Software design
 Design a software structure that realises the specification;
 Implementation
 Translate this structure into an executable program;
 The activities of design and implementation are closely
related and may be inter-leaved.
18Software Processes
A general model of the design process
19Software Processes
Design activities
 Architectural design, where you identify the overall
structure of the system, the principal components
(sometimes called sub-systems or modules), their
relationships and how they are distributed.
 Interface design, where you define the interfaces
between system components.
 Component design, where you take each system
component and design how it will operate.
 Database design, where you design the system data
structures and how these are to be represented in a
database.
20Software Processes
Software validation
 Verification and validation (V & V) is intended to show
that a system conforms to its specification and meets the
requirements of the system customer.
 Involves checking and review processes and system
testing.
 System testing involves executing the system with test
cases that are derived from the specification of the real
data to be processed by the system.
 Testing is the most commonly used V & V activity.
21Software Processes
Stages of testing
22Software Processes
Testing stages
 Development or component testing
 Individual components are tested independently;
 Components may be functions or objects or coherent groupings
of these entities.
 System testing
 Testing of the system as a whole. Testing of emergent properties
is particularly important.
 Acceptance testing
 Testing with customer data to check that the system meets the
customer’s needs.
23Software Processes
Testing phases in a plan-driven software
process
24Software Processes
Software evolution
 Software is inherently flexible and can change.
 As requirements change through changing business
circumstances, the software that supports the business
must also evolve and change.
 Although there has been a demarcation between
development and evolution (maintenance) this is
increasingly irrelevant as fewer and fewer systems are
completely new.
25Software Processes
System evolution
26Software Processes
Software Processes
Lecture 2
27Software Processes
Coping with change
 Change is inevitable in all large software projects.
 Business changes lead to new and changed system
requirements
 New technologies open up new possibilities for improving
implementations
 Changing platforms require application changes
 Change leads to rework so the costs of change include
both rework (e.g. re-analyzing requirements) as well as
the costs of implementing new functionality
28Software Processes
Reducing the costs of rework
 Change avoidance, where the software process includes
activities that can anticipate possible changes before
significant rework is required.
 For example, a prototype system may be developed to show
some key features of the system to customers.
 Change tolerance, where the process is designed so that
changes can be accommodated at relatively low cost.
 This normally involves some form of incremental development.
Proposed changes may be implemented in increments that have
not yet been developed. If this is impossible, then only a single
increment (a small part of the system) may have be altered to
incorporate the change.
29Software Processes
Software prototyping
 A prototype is an initial version of a system used to
demonstrate concepts and try out design options.
 A prototype can be used in:
 The requirements engineering process to help with requirements
elicitation and validation;
 In design processes to explore options and develop a UI design;
 In the testing process to run back-to-back tests.
30Software Processes
Benefits of prototyping
 Improved system usability.
 A closer match to users’ real needs.
 Improved design quality.
 Improved maintainability.
 Reduced development effort.
31Software Processes
The process of prototype development
32Software Processes
Prototype development
 May be based on rapid prototyping languages or tools
 May involve leaving out functionality
 Prototype should focus on areas of the product that are not well-
understood;
 Error checking and recovery may not be included in the
prototype;
 Focus on functional rather than non-functional requirements
such as reliability and security
Software Processes 33
Throw-away prototypes
 Prototypes should be discarded after development as
they are not a good basis for a production system:
 It may be impossible to tune the system to meet non-functional
requirements;
 Prototypes are normally undocumented;
 The prototype structure is usually degraded through rapid
change;
 The prototype probably will not meet normal organisational
quality standards.
34Software Processes
Incremental delivery
 Rather than deliver the system as a single delivery, the
development and delivery is broken down into
increments with each increment delivering part of the
required functionality.
 User requirements are prioritised and the highest priority
requirements are included in early increments.
 Once the development of an increment is started, the
requirements are frozen though requirements for later
increments can continue to evolve.
35Software Processes
Incremental development and delivery
 Incremental development
 Develop the system in increments and evaluate each increment
before proceeding to the development of the next increment;
 Normal approach used in agile methods;
 Evaluation done by user/customer proxy.
 Incremental delivery
 Deploy an increment for use by end-users;
 More realistic evaluation about practical use of software;
 Difficult to implement for replacement systems as increments
have less functionality than the system being replaced.
Software Processes 36
Incremental delivery
37Software Processes
Incremental delivery advantages
 Customer value can be delivered with each increment so
system functionality is available earlier.
 Early increments act as a prototype to help elicit
requirements for later increments.
 Lower risk of overall project failure.
 The highest priority system services tend to receive the
most testing.
38Software Processes
Incremental delivery problems
 Most systems require a set of basic facilities that are
used by different parts of the system.
 As requirements are not defined in detail until an increment is to
be implemented, it can be hard to identify common facilities that
are needed by all increments.
 The essence of iterative processes is that the
specification is developed in conjunction with the
software.
 However, this conflicts with the procurement model of many
organizations, where the complete system specification is part of
the system development contract.
39Software Processes
Spiral model
 Process is represented as a spiral rather than as a
sequence of activities with backtracking.
 Each loop in the spiral represents a phase in the
process.
 No fixed phases such as specification or design - loops
in the spiral are chosen depending on what is required.
 Risks are explicitly assessed and resolved throughout
the process.
40Software Processes
Spiral model of the software process
41Software Processes
Spiral model sectors
 Objective setting
 Specific objectives for the phase are identified.
 Risk assessment and reduction
 Risks are assessed and activities put in place to reduce the key
risks.
 Development and validation
 A development model for the system is chosen which can be
any of the generic models.
 Planning
 The project is reviewed and the next phase of the spiral is
planned.
42Software Processes
Spiral model usage
 Spiral model has been very influential in helping people
think about iteration in software processes and
introducing the risk-driven approach to development.
 In practice, however, the model is rarely used as
published for practical software development.
Software Processes 43
The Rational Unified Process
 A modern generic process derived from the work on the
UML and associated process.
 Brings together aspects of the 3 generic process models
discussed previously.
 Normally described from 3 perspectives
 A dynamic perspective that shows phases over time;
 A static perspective that shows process activities;
 A practive perspective that suggests good practice.
44Software Processes
Phases in the Rational Unified Process
45Software Processes
RUP phases
 Inception
 Establish the business case for the system.
 Elaboration
 Develop an understanding of the problem domain and the
system architecture.
 Construction
 System design, programming and testing.
 Transition
 Deploy the system in its operating environment.
46Software Processes
RUP iteration
 In-phase iteration
 Each phase is iterative with results developed incrementally.
 Cross-phase iteration
 As shown by the loop in the RUP model, the whole set of phases
may be enacted incrementally.
Software Processes 47
Static workflows in the Rational Unified Process
Workflow Description
Business modelling The business processes are modelled using business
use cases.
Requirements Actors who interact with the system are identified and
use cases are developed to model the system
requirements.
Analysis and design A design model is created and documented using
architectural models, component models, object
models and sequence models.
Implementation The components in the system are implemented and
structured into implementation sub-systems.
Automatic code generation from design models helps
accelerate this process.
48Software Processes
Static workflows in the Rational Unified Process
Workflow Description
Testing Testing is an iterative process that is carried out in conjunction
with implementation. System testing follows the completion of
the implementation.
Deployment A product release is created, distributed to users and installed in
their workplace.
Configuration and
change management
This supporting workflow managed changes to the system (see
Chapter 25).
Project management This supporting workflow manages the system development (see
Chapters 22 and 23).
Environment This workflow is concerned with making appropriate software
tools available to the software development team.
49Software Processes
RUP good practice
 Develop software iteratively
 Plan increments based on customer priorities and deliver highest
priority increments first.
 Manage requirements
 Explicitly document customer requirements and keep track of
changes to these requirements.
 Use component-based architectures
 Organize the system architecture as a set of reusable
components.
50Software Processes
RUP good practice
 Visually model software
 Use graphical UML models to present static and dynamic views
of the software.
 Verify software quality
 Ensure that the software meet’s organizational quality standards.
 Control changes to software
 Manage software changes using a change management system
and configuration management tools.
Software Processes 51

More Related Content

What's hot

Software Evolution
Software EvolutionSoftware Evolution
Software Evolution
Muhammad Asim
 
Software myths | Software Engineering Notes
Software myths | Software Engineering NotesSoftware myths | Software Engineering Notes
Software myths | Software Engineering Notes
Navjyotsinh Jadeja
 
Introduction to Software Engineering
Introduction to Software EngineeringIntroduction to Software Engineering
Introduction to Software Engineering
Saqib Raza
 
Chapter 13 software testing strategies
Chapter 13 software testing strategiesChapter 13 software testing strategies
Chapter 13 software testing strategies
SHREEHARI WADAWADAGI
 
Introduction to software engineering
Introduction to software engineeringIntroduction to software engineering
Introduction to software engineering
Hitesh Mohapatra
 
Spiral model presentation
Spiral model presentationSpiral model presentation
Spiral model presentation
SayedFarhan110
 
Software Engineering Layered Technology Software Process Framework
Software Engineering  Layered Technology Software Process FrameworkSoftware Engineering  Layered Technology Software Process Framework
Software Engineering Layered Technology Software Process Framework
JAINAM KAPADIYA
 
Software Engineering concept
Software Engineering concept Software Engineering concept
Software Engineering concept
Atamjitsingh92
 
Design Concept software engineering
Design Concept software engineeringDesign Concept software engineering
Design Concept software engineering
Darshit Metaliya
 
Pressman ch-3-prescriptive-process-models
Pressman ch-3-prescriptive-process-modelsPressman ch-3-prescriptive-process-models
Pressman ch-3-prescriptive-process-models
saurabhshertukde
 
Use Case Diagram
Use Case DiagramUse Case Diagram
Use Case Diagram
Kumar
 
Model Based Software Architectures
Model Based Software ArchitecturesModel Based Software Architectures
Model Based Software Architectures
Munazza-Mah-Jabeen
 
Software engineering a practitioners approach 8th edition pressman solutions ...
Software engineering a practitioners approach 8th edition pressman solutions ...Software engineering a practitioners approach 8th edition pressman solutions ...
Software engineering a practitioners approach 8th edition pressman solutions ...
Drusilla918
 
Waterfall model in SDLC
Waterfall model in SDLCWaterfall model in SDLC
Waterfall model in SDLC
HND Assignment Help
 
Incremental model
Incremental modelIncremental model
Incremental model
Hpibmx
 
Software Engineering - Ch1
Software Engineering - Ch1Software Engineering - Ch1
Software Engineering - Ch1
Siddharth Ayer
 
Introduction to UML
Introduction to UMLIntroduction to UML
Unit1
Unit1Unit1
Unit1
anuragmbst
 
Software engineering project management
Software engineering project managementSoftware engineering project management
Software engineering project management
jhudyne
 
Design Concepts in Software Engineering-1.pptx
Design Concepts in Software Engineering-1.pptxDesign Concepts in Software Engineering-1.pptx
Design Concepts in Software Engineering-1.pptx
KarthigaiSelviS3
 

What's hot (20)

Software Evolution
Software EvolutionSoftware Evolution
Software Evolution
 
Software myths | Software Engineering Notes
Software myths | Software Engineering NotesSoftware myths | Software Engineering Notes
Software myths | Software Engineering Notes
 
Introduction to Software Engineering
Introduction to Software EngineeringIntroduction to Software Engineering
Introduction to Software Engineering
 
Chapter 13 software testing strategies
Chapter 13 software testing strategiesChapter 13 software testing strategies
Chapter 13 software testing strategies
 
Introduction to software engineering
Introduction to software engineeringIntroduction to software engineering
Introduction to software engineering
 
Spiral model presentation
Spiral model presentationSpiral model presentation
Spiral model presentation
 
Software Engineering Layered Technology Software Process Framework
Software Engineering  Layered Technology Software Process FrameworkSoftware Engineering  Layered Technology Software Process Framework
Software Engineering Layered Technology Software Process Framework
 
Software Engineering concept
Software Engineering concept Software Engineering concept
Software Engineering concept
 
Design Concept software engineering
Design Concept software engineeringDesign Concept software engineering
Design Concept software engineering
 
Pressman ch-3-prescriptive-process-models
Pressman ch-3-prescriptive-process-modelsPressman ch-3-prescriptive-process-models
Pressman ch-3-prescriptive-process-models
 
Use Case Diagram
Use Case DiagramUse Case Diagram
Use Case Diagram
 
Model Based Software Architectures
Model Based Software ArchitecturesModel Based Software Architectures
Model Based Software Architectures
 
Software engineering a practitioners approach 8th edition pressman solutions ...
Software engineering a practitioners approach 8th edition pressman solutions ...Software engineering a practitioners approach 8th edition pressman solutions ...
Software engineering a practitioners approach 8th edition pressman solutions ...
 
Waterfall model in SDLC
Waterfall model in SDLCWaterfall model in SDLC
Waterfall model in SDLC
 
Incremental model
Incremental modelIncremental model
Incremental model
 
Software Engineering - Ch1
Software Engineering - Ch1Software Engineering - Ch1
Software Engineering - Ch1
 
Introduction to UML
Introduction to UMLIntroduction to UML
Introduction to UML
 
Unit1
Unit1Unit1
Unit1
 
Software engineering project management
Software engineering project managementSoftware engineering project management
Software engineering project management
 
Design Concepts in Software Engineering-1.pptx
Design Concepts in Software Engineering-1.pptxDesign Concepts in Software Engineering-1.pptx
Design Concepts in Software Engineering-1.pptx
 

Viewers also liked

Software Process Models
Software Process ModelsSoftware Process Models
Software Process Models
Jesse Manalansan
 
process models- software engineering
process models- software engineeringprocess models- software engineering
process models- software engineering
Arun Nair
 
Software Process Models
Software Process ModelsSoftware Process Models
Software Process Models
Ahmed Alageed
 
2. Software process
2. Software process2. Software process
2. Software process
Ashis Kumar Chanda
 
Modelos ciclosdevida
Modelos ciclosdevidaModelos ciclosdevida
Modelos ciclosdevida
Alexis Zambrana Laime
 
Practica martes22
Practica martes22Practica martes22
Practica martes22jamarzo
 
Catalogued and student workers database(use cases diagram)
Catalogued and student workers database(use cases diagram)Catalogued and student workers database(use cases diagram)
Catalogued and student workers database(use cases diagram)
Jennifer Polack
 
Introduction to software engineering
Introduction to software engineeringIntroduction to software engineering
Introduction to software engineering
Shrayas Suryakumar
 
Modulo 3
Modulo 3Modulo 3
Modulo 3
maria_jaramillo
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
ans ali raza
 
Erd examples
Erd examplesErd examples
Erd examples
Jennifer Polack
 
Dynamic modeling
Dynamic modelingDynamic modeling
Dynamic modeling
Preeti Mishra
 
Unit 1 importance ofsoftengg_b.tech iii year
Unit 1  importance ofsoftengg_b.tech iii yearUnit 1  importance ofsoftengg_b.tech iii year
Unit 1 importance ofsoftengg_b.tech iii year
Preeti Mishra
 
Agile software process
Agile software processAgile software process
Agile software process
Jennifer Polack
 
Process Models IN software Engineering
Process Models IN software EngineeringProcess Models IN software Engineering
Process Models IN software Engineering
Arid Agriculture university rawalpindi
 
software engineering
software engineeringsoftware engineering
software engineering
Azad public school
 
software Engineering process
software Engineering processsoftware Engineering process
software Engineering process
Raheel Aslam
 
Lecture 01 Introduction to Software Engineering
Lecture 01 Introduction to Software EngineeringLecture 01 Introduction to Software Engineering
Lecture 01 Introduction to Software Engineering
Achmad Solichin
 
Database design
Database designDatabase design
Database design
Jennifer Polack
 
Software Engineering: Models
Software Engineering: ModelsSoftware Engineering: Models
Software Engineering: Models
David Millard
 

Viewers also liked (20)

Software Process Models
Software Process ModelsSoftware Process Models
Software Process Models
 
process models- software engineering
process models- software engineeringprocess models- software engineering
process models- software engineering
 
Software Process Models
Software Process ModelsSoftware Process Models
Software Process Models
 
2. Software process
2. Software process2. Software process
2. Software process
 
Modelos ciclosdevida
Modelos ciclosdevidaModelos ciclosdevida
Modelos ciclosdevida
 
Practica martes22
Practica martes22Practica martes22
Practica martes22
 
Catalogued and student workers database(use cases diagram)
Catalogued and student workers database(use cases diagram)Catalogued and student workers database(use cases diagram)
Catalogued and student workers database(use cases diagram)
 
Introduction to software engineering
Introduction to software engineeringIntroduction to software engineering
Introduction to software engineering
 
Modulo 3
Modulo 3Modulo 3
Modulo 3
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Erd examples
Erd examplesErd examples
Erd examples
 
Dynamic modeling
Dynamic modelingDynamic modeling
Dynamic modeling
 
Unit 1 importance ofsoftengg_b.tech iii year
Unit 1  importance ofsoftengg_b.tech iii yearUnit 1  importance ofsoftengg_b.tech iii year
Unit 1 importance ofsoftengg_b.tech iii year
 
Agile software process
Agile software processAgile software process
Agile software process
 
Process Models IN software Engineering
Process Models IN software EngineeringProcess Models IN software Engineering
Process Models IN software Engineering
 
software engineering
software engineeringsoftware engineering
software engineering
 
software Engineering process
software Engineering processsoftware Engineering process
software Engineering process
 
Lecture 01 Introduction to Software Engineering
Lecture 01 Introduction to Software EngineeringLecture 01 Introduction to Software Engineering
Lecture 01 Introduction to Software Engineering
 
Database design
Database designDatabase design
Database design
 
Software Engineering: Models
Software Engineering: ModelsSoftware Engineering: Models
Software Engineering: Models
 

Similar to Software process

SOFTWARE ENGINEERING PART 1
SOFTWARE ENGINEERING PART 1SOFTWARE ENGINEERING PART 1
SOFTWARE ENGINEERING PART 1
ravi gupta
 
Ch2
Ch2Ch2
Ch 2 Software Engineering
Ch 2 Software EngineeringCh 2 Software Engineering
Ch 2 Software Engineering
Imran Mirza
 
SE Sumerville 9th Chp 2
SE Sumerville 9th Chp 2SE Sumerville 9th Chp 2
SE Sumerville 9th Chp 2
Kashif Sohail
 
Ch2-2.pptx
Ch2-2.pptxCh2-2.pptx
Ian Sommerville, Software Engineering, 9th Edition Ch2
Ian Sommerville,  Software Engineering, 9th Edition Ch2Ian Sommerville,  Software Engineering, 9th Edition Ch2
Ian Sommerville, Software Engineering, 9th Edition Ch2
Mohammed Romi
 
Ch2-Software Engineering 9
Ch2-Software Engineering 9Ch2-Software Engineering 9
Ch2-Software Engineering 9
Ian Sommerville
 
Process in Software Engineering/4'ps in Software Engineerin
Process in Software Engineering/4'ps in Software EngineerinProcess in Software Engineering/4'ps in Software Engineerin
Process in Software Engineering/4'ps in Software Engineerin
MuhammadSufianJani
 
Ch2
Ch2Ch2
Ch2
Limkri
 
Soft Eng - Software Process
Soft  Eng - Software ProcessSoft  Eng - Software Process
Soft Eng - Software Process
Jomel Penalba
 
Ch4
Ch4Ch4
Ch4
Ch4Ch4
Software Process in Software Engineering SE3
Software Process in Software Engineering SE3Software Process in Software Engineering SE3
Software Process in Software Engineering SE3
koolkampus
 
SE2.ppt
SE2.pptSE2.ppt
SE2.ppt
AaMir519591
 
04_Materi Software Proses-Models(1).pptx
04_Materi Software Proses-Models(1).pptx04_Materi Software Proses-Models(1).pptx
04_Materi Software Proses-Models(1).pptx
MarwondoMarwondo
 
se02_SW_Process.ppt
se02_SW_Process.pptse02_SW_Process.ppt
se02_SW_Process.ppt
Nhân Công
 
Software Engineering
Software EngineeringSoftware Engineering
Software Engineering
Mohamed Essam
 
Chapter 2.pptx
Chapter 2.pptxChapter 2.pptx
Chapter 2.pptx
AmnaAhsaan1
 
software Processes
software Processessoftware Processes
software Processes
Seif Shaame
 
SE-03.pptx
SE-03.pptxSE-03.pptx
SE-03.pptx
HaiderAli252366
 

Similar to Software process (20)

SOFTWARE ENGINEERING PART 1
SOFTWARE ENGINEERING PART 1SOFTWARE ENGINEERING PART 1
SOFTWARE ENGINEERING PART 1
 
Ch2
Ch2Ch2
Ch2
 
Ch 2 Software Engineering
Ch 2 Software EngineeringCh 2 Software Engineering
Ch 2 Software Engineering
 
SE Sumerville 9th Chp 2
SE Sumerville 9th Chp 2SE Sumerville 9th Chp 2
SE Sumerville 9th Chp 2
 
Ch2-2.pptx
Ch2-2.pptxCh2-2.pptx
Ch2-2.pptx
 
Ian Sommerville, Software Engineering, 9th Edition Ch2
Ian Sommerville,  Software Engineering, 9th Edition Ch2Ian Sommerville,  Software Engineering, 9th Edition Ch2
Ian Sommerville, Software Engineering, 9th Edition Ch2
 
Ch2-Software Engineering 9
Ch2-Software Engineering 9Ch2-Software Engineering 9
Ch2-Software Engineering 9
 
Process in Software Engineering/4'ps in Software Engineerin
Process in Software Engineering/4'ps in Software EngineerinProcess in Software Engineering/4'ps in Software Engineerin
Process in Software Engineering/4'ps in Software Engineerin
 
Ch2
Ch2Ch2
Ch2
 
Soft Eng - Software Process
Soft  Eng - Software ProcessSoft  Eng - Software Process
Soft Eng - Software Process
 
Ch4
Ch4Ch4
Ch4
 
Ch4
Ch4Ch4
Ch4
 
Software Process in Software Engineering SE3
Software Process in Software Engineering SE3Software Process in Software Engineering SE3
Software Process in Software Engineering SE3
 
SE2.ppt
SE2.pptSE2.ppt
SE2.ppt
 
04_Materi Software Proses-Models(1).pptx
04_Materi Software Proses-Models(1).pptx04_Materi Software Proses-Models(1).pptx
04_Materi Software Proses-Models(1).pptx
 
se02_SW_Process.ppt
se02_SW_Process.pptse02_SW_Process.ppt
se02_SW_Process.ppt
 
Software Engineering
Software EngineeringSoftware Engineering
Software Engineering
 
Chapter 2.pptx
Chapter 2.pptxChapter 2.pptx
Chapter 2.pptx
 
software Processes
software Processessoftware Processes
software Processes
 
SE-03.pptx
SE-03.pptxSE-03.pptx
SE-03.pptx
 

More from Jennifer Polack

Trainer use cases
Trainer use casesTrainer use cases
Trainer use cases
Jennifer Polack
 
Umw training program
Umw training programUmw training program
Umw training program
Jennifer Polack
 
Classroom scheduler update
Classroom scheduler updateClassroom scheduler update
Classroom scheduler update
Jennifer Polack
 
Temperature data analyzer requirements
Temperature data analyzer requirementsTemperature data analyzer requirements
Temperature data analyzer requirements
Jennifer Polack
 
Training Programming Description- Morning Section
Training Programming Description- Morning SectionTraining Programming Description- Morning Section
Training Programming Description- Morning Section
Jennifer Polack
 
Training Programming Description- Afternoon Section
Training Programming Description- Afternoon SectionTraining Programming Description- Afternoon Section
Training Programming Description- Afternoon Section
Jennifer Polack
 
Cataloged and student workers database
Cataloged and student workers databaseCataloged and student workers database
Cataloged and student workers database
Jennifer Polack
 
Temperature Analyzer Project
Temperature Analyzer ProjectTemperature Analyzer Project
Temperature Analyzer Project
Jennifer Polack
 
System Modelling
System ModellingSystem Modelling
System Modelling
Jennifer Polack
 
What is software engineering
What is software engineeringWhat is software engineering
What is software engineering
Jennifer Polack
 
Requirements engineering
Requirements engineeringRequirements engineering
Requirements engineering
Jennifer Polack
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
Jennifer Polack
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
Jennifer Polack
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
Jennifer Polack
 
Ccsc 2015 panel
Ccsc 2015 panelCcsc 2015 panel
Ccsc 2015 panel
Jennifer Polack
 
Chapter 8
Chapter 8Chapter 8
Chapter 8
Jennifer Polack
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
Jennifer Polack
 
Erd practice exercises
Erd practice exercisesErd practice exercises
Erd practice exercises
Jennifer Polack
 
Ch04
Ch04Ch04
Chapter 2 group quiz
Chapter 2 group quizChapter 2 group quiz
Chapter 2 group quiz
Jennifer Polack
 

More from Jennifer Polack (20)

Trainer use cases
Trainer use casesTrainer use cases
Trainer use cases
 
Umw training program
Umw training programUmw training program
Umw training program
 
Classroom scheduler update
Classroom scheduler updateClassroom scheduler update
Classroom scheduler update
 
Temperature data analyzer requirements
Temperature data analyzer requirementsTemperature data analyzer requirements
Temperature data analyzer requirements
 
Training Programming Description- Morning Section
Training Programming Description- Morning SectionTraining Programming Description- Morning Section
Training Programming Description- Morning Section
 
Training Programming Description- Afternoon Section
Training Programming Description- Afternoon SectionTraining Programming Description- Afternoon Section
Training Programming Description- Afternoon Section
 
Cataloged and student workers database
Cataloged and student workers databaseCataloged and student workers database
Cataloged and student workers database
 
Temperature Analyzer Project
Temperature Analyzer ProjectTemperature Analyzer Project
Temperature Analyzer Project
 
System Modelling
System ModellingSystem Modelling
System Modelling
 
What is software engineering
What is software engineeringWhat is software engineering
What is software engineering
 
Requirements engineering
Requirements engineeringRequirements engineering
Requirements engineering
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Ccsc 2015 panel
Ccsc 2015 panelCcsc 2015 panel
Ccsc 2015 panel
 
Chapter 8
Chapter 8Chapter 8
Chapter 8
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Erd practice exercises
Erd practice exercisesErd practice exercises
Erd practice exercises
 
Ch04
Ch04Ch04
Ch04
 
Chapter 2 group quiz
Chapter 2 group quizChapter 2 group quiz
Chapter 2 group quiz
 

Recently uploaded

Brand Guideline of Bashundhara A4 Paper - 2024
Brand Guideline of Bashundhara A4 Paper - 2024Brand Guideline of Bashundhara A4 Paper - 2024
Brand Guideline of Bashundhara A4 Paper - 2024
khabri85
 
The Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teachingThe Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teaching
Derek Wenmoth
 
220711130082 Srabanti Bag Internet Resources For Natural Science
220711130082 Srabanti Bag Internet Resources For Natural Science220711130082 Srabanti Bag Internet Resources For Natural Science
220711130082 Srabanti Bag Internet Resources For Natural Science
Kalna College
 
How to stay relevant as a cyber professional: Skills, trends and career paths...
How to stay relevant as a cyber professional: Skills, trends and career paths...How to stay relevant as a cyber professional: Skills, trends and career paths...
How to stay relevant as a cyber professional: Skills, trends and career paths...
Infosec
 
pol sci Election and Representation Class 11 Notes.pdf
pol sci Election and Representation Class 11 Notes.pdfpol sci Election and Representation Class 11 Notes.pdf
pol sci Election and Representation Class 11 Notes.pdf
BiplabHalder13
 
Accounting for Restricted Grants When and How To Record Properly
Accounting for Restricted Grants  When and How To Record ProperlyAccounting for Restricted Grants  When and How To Record Properly
Accounting for Restricted Grants When and How To Record Properly
TechSoup
 
INTRODUCTION TO HOSPITALS & AND ITS ORGANIZATION
INTRODUCTION TO HOSPITALS & AND ITS ORGANIZATION INTRODUCTION TO HOSPITALS & AND ITS ORGANIZATION
INTRODUCTION TO HOSPITALS & AND ITS ORGANIZATION
ShwetaGawande8
 
220711130097 Tulip Samanta Concept of Information and Communication Technology
220711130097 Tulip Samanta Concept of Information and Communication Technology220711130097 Tulip Samanta Concept of Information and Communication Technology
220711130097 Tulip Samanta Concept of Information and Communication Technology
Kalna College
 
BỘ BÀI TẬP TEST THEO UNIT - FORM 2025 - TIẾNG ANH 12 GLOBAL SUCCESS - KÌ 1 (B...
BỘ BÀI TẬP TEST THEO UNIT - FORM 2025 - TIẾNG ANH 12 GLOBAL SUCCESS - KÌ 1 (B...BỘ BÀI TẬP TEST THEO UNIT - FORM 2025 - TIẾNG ANH 12 GLOBAL SUCCESS - KÌ 1 (B...
BỘ BÀI TẬP TEST THEO UNIT - FORM 2025 - TIẾNG ANH 12 GLOBAL SUCCESS - KÌ 1 (B...
Nguyen Thanh Tu Collection
 
Diversity Quiz Prelims by Quiz Club, IIT Kanpur
Diversity Quiz Prelims by Quiz Club, IIT KanpurDiversity Quiz Prelims by Quiz Club, IIT Kanpur
Diversity Quiz Prelims by Quiz Club, IIT Kanpur
Quiz Club IIT Kanpur
 
Creation or Update of a Mandatory Field is Not Set in Odoo 17
Creation or Update of a Mandatory Field is Not Set in Odoo 17Creation or Update of a Mandatory Field is Not Set in Odoo 17
Creation or Update of a Mandatory Field is Not Set in Odoo 17
Celine George
 
Non-Verbal Communication for Tech Professionals
Non-Verbal Communication for Tech ProfessionalsNon-Verbal Communication for Tech Professionals
Non-Verbal Communication for Tech Professionals
MattVassar1
 
Get Success with the Latest UiPath UIPATH-ADPV1 Exam Dumps (V11.02) 2024
Get Success with the Latest UiPath UIPATH-ADPV1 Exam Dumps (V11.02) 2024Get Success with the Latest UiPath UIPATH-ADPV1 Exam Dumps (V11.02) 2024
Get Success with the Latest UiPath UIPATH-ADPV1 Exam Dumps (V11.02) 2024
yarusun
 
(T.L.E.) Agriculture: "Ornamental Plants"
(T.L.E.) Agriculture: "Ornamental Plants"(T.L.E.) Agriculture: "Ornamental Plants"
(T.L.E.) Agriculture: "Ornamental Plants"
MJDuyan
 
managing Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptxmanaging Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptx
nabaegha
 
220711130083 SUBHASHREE RAKSHIT Internet resources for social science
220711130083 SUBHASHREE RAKSHIT  Internet resources for social science220711130083 SUBHASHREE RAKSHIT  Internet resources for social science
220711130083 SUBHASHREE RAKSHIT Internet resources for social science
Kalna College
 
IoT (Internet of Things) introduction Notes.pdf
IoT (Internet of Things) introduction Notes.pdfIoT (Internet of Things) introduction Notes.pdf
IoT (Internet of Things) introduction Notes.pdf
roshanranjit222
 
8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity
RuchiRathor2
 
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
220711130100 udita Chakraborty  Aims and objectives of national policy on inf...220711130100 udita Chakraborty  Aims and objectives of national policy on inf...
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
Kalna College
 
Information and Communication Technology in Education
Information and Communication Technology in EducationInformation and Communication Technology in Education
Information and Communication Technology in Education
MJDuyan
 

Recently uploaded (20)

Brand Guideline of Bashundhara A4 Paper - 2024
Brand Guideline of Bashundhara A4 Paper - 2024Brand Guideline of Bashundhara A4 Paper - 2024
Brand Guideline of Bashundhara A4 Paper - 2024
 
The Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teachingThe Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teaching
 
220711130082 Srabanti Bag Internet Resources For Natural Science
220711130082 Srabanti Bag Internet Resources For Natural Science220711130082 Srabanti Bag Internet Resources For Natural Science
220711130082 Srabanti Bag Internet Resources For Natural Science
 
How to stay relevant as a cyber professional: Skills, trends and career paths...
How to stay relevant as a cyber professional: Skills, trends and career paths...How to stay relevant as a cyber professional: Skills, trends and career paths...
How to stay relevant as a cyber professional: Skills, trends and career paths...
 
pol sci Election and Representation Class 11 Notes.pdf
pol sci Election and Representation Class 11 Notes.pdfpol sci Election and Representation Class 11 Notes.pdf
pol sci Election and Representation Class 11 Notes.pdf
 
Accounting for Restricted Grants When and How To Record Properly
Accounting for Restricted Grants  When and How To Record ProperlyAccounting for Restricted Grants  When and How To Record Properly
Accounting for Restricted Grants When and How To Record Properly
 
INTRODUCTION TO HOSPITALS & AND ITS ORGANIZATION
INTRODUCTION TO HOSPITALS & AND ITS ORGANIZATION INTRODUCTION TO HOSPITALS & AND ITS ORGANIZATION
INTRODUCTION TO HOSPITALS & AND ITS ORGANIZATION
 
220711130097 Tulip Samanta Concept of Information and Communication Technology
220711130097 Tulip Samanta Concept of Information and Communication Technology220711130097 Tulip Samanta Concept of Information and Communication Technology
220711130097 Tulip Samanta Concept of Information and Communication Technology
 
BỘ BÀI TẬP TEST THEO UNIT - FORM 2025 - TIẾNG ANH 12 GLOBAL SUCCESS - KÌ 1 (B...
BỘ BÀI TẬP TEST THEO UNIT - FORM 2025 - TIẾNG ANH 12 GLOBAL SUCCESS - KÌ 1 (B...BỘ BÀI TẬP TEST THEO UNIT - FORM 2025 - TIẾNG ANH 12 GLOBAL SUCCESS - KÌ 1 (B...
BỘ BÀI TẬP TEST THEO UNIT - FORM 2025 - TIẾNG ANH 12 GLOBAL SUCCESS - KÌ 1 (B...
 
Diversity Quiz Prelims by Quiz Club, IIT Kanpur
Diversity Quiz Prelims by Quiz Club, IIT KanpurDiversity Quiz Prelims by Quiz Club, IIT Kanpur
Diversity Quiz Prelims by Quiz Club, IIT Kanpur
 
Creation or Update of a Mandatory Field is Not Set in Odoo 17
Creation or Update of a Mandatory Field is Not Set in Odoo 17Creation or Update of a Mandatory Field is Not Set in Odoo 17
Creation or Update of a Mandatory Field is Not Set in Odoo 17
 
Non-Verbal Communication for Tech Professionals
Non-Verbal Communication for Tech ProfessionalsNon-Verbal Communication for Tech Professionals
Non-Verbal Communication for Tech Professionals
 
Get Success with the Latest UiPath UIPATH-ADPV1 Exam Dumps (V11.02) 2024
Get Success with the Latest UiPath UIPATH-ADPV1 Exam Dumps (V11.02) 2024Get Success with the Latest UiPath UIPATH-ADPV1 Exam Dumps (V11.02) 2024
Get Success with the Latest UiPath UIPATH-ADPV1 Exam Dumps (V11.02) 2024
 
(T.L.E.) Agriculture: "Ornamental Plants"
(T.L.E.) Agriculture: "Ornamental Plants"(T.L.E.) Agriculture: "Ornamental Plants"
(T.L.E.) Agriculture: "Ornamental Plants"
 
managing Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptxmanaging Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptx
 
220711130083 SUBHASHREE RAKSHIT Internet resources for social science
220711130083 SUBHASHREE RAKSHIT  Internet resources for social science220711130083 SUBHASHREE RAKSHIT  Internet resources for social science
220711130083 SUBHASHREE RAKSHIT Internet resources for social science
 
IoT (Internet of Things) introduction Notes.pdf
IoT (Internet of Things) introduction Notes.pdfIoT (Internet of Things) introduction Notes.pdf
IoT (Internet of Things) introduction Notes.pdf
 
8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity
 
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
220711130100 udita Chakraborty  Aims and objectives of national policy on inf...220711130100 udita Chakraborty  Aims and objectives of national policy on inf...
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
 
Information and Communication Technology in Education
Information and Communication Technology in EducationInformation and Communication Technology in Education
Information and Communication Technology in Education
 

Software process

  • 2. The software process  A structured set of activities required to develop a software system.  Many different software processes but all involve:  Specification – defining what the system should do;  Design and implementation – defining the organization of the system and implementing the system;  Validation – checking that it does what the customer wants;  Evolution – changing the system in response to changing customer needs.  A software process model is an abstract representation of a process. It presents a description of a process from some particular perspective. 2Chapter 2 Software Processes
  • 3. Software process descriptions  When we describe and discuss processes, we usually talk about the activities in these processes such as specifying a data model, designing a user interface, etc. and the ordering of these activities.  Process descriptions may also include:  Products, which are the outcomes of a process activity;  Roles, which reflect the responsibilities of the people involved in the process;  Pre- and post-conditions, which are statements that are true before and after a process activity has been enacted or a product produced. 3Software Processes
  • 4. Plan-driven and agile processes  Plan-driven processes are processes where all of the process activities are planned in advance and progress is measured against this plan.  In agile processes, planning is incremental and it is easier to change the process to reflect changing customer requirements.  In practice, most practical processes include elements of both plan-driven and agile approaches.  There are no right or wrong software processes. 4Software Processes
  • 5. Software process models  The waterfall model  Plan-driven model. Separate and distinct phases of specification and development.  Incremental development  Specification, development and validation are interleaved. May be plan-driven or agile.  Reuse-oriented software engineering  The system is assembled from existing components. May be plan-driven or agile.  In practice, most large systems are developed using a process that incorporates elements from all of these models. 5Software Processes
  • 7. Waterfall model phases  There are separate identified phases in the waterfall model:  Requirements analysis and definition  System and software design  Implementation and unit testing  Integration and system testing  Operation and maintenance  The main drawback of the waterfall model is the difficulty of accommodating change after the process is underway. In principle, a phase has to be complete before moving onto the next phase. 7Software Processes
  • 8. Waterfall model problems  Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing customer requirements.  Therefore, this model is only appropriate when the requirements are well-understood and changes will be fairly limited during the design process.  Few business systems have stable requirements.  The waterfall model is mostly used for large systems engineering projects where a system is developed at several sites.  In those circumstances, the plan-driven nature of the waterfall model helps coordinate the work. 8Software Processes
  • 10. Incremental development benefits  The cost of accommodating changing customer requirements is reduced.  The amount of analysis and documentation that has to be redone is much less than is required with the waterfall model.  It is easier to get customer feedback on the development work that has been done.  Customers can comment on demonstrations of the software and see how much has been implemented.  More rapid delivery and deployment of useful software to the customer is possible.  Customers are able to use and gain value from the software earlier than is possible with a waterfall process. 10Software Processes
  • 11. Incremental development problems  The process is not visible.  Managers need regular deliverables to measure progress. If systems are developed quickly, it is not cost-effective to produce documents that reflect every version of the system.  System structure tends to degrade as new increments are added.  Unless time and money is spent on refactoring to improve the software, regular change tends to corrupt its structure. Incorporating further software changes becomes increasingly difficult and costly. 11Software Processes
  • 12. Reuse-oriented software engineering  Based on systematic reuse where systems are integrated from existing components or COTS (Commercial-off-the-shelf) systems.  Process stages  Component analysis;  Requirements modification;  System design with reuse;  Development and integration.  Reuse is now the standard approach for building many types of business system  Reuse covered in more depth in Chapter 16. 12Software Processes
  • 14. Types of software component  Web services that are developed according to service standards and which are available for remote invocation.  Collections of objects that are developed as a package to be integrated with a component framework such as .NET or J2EE.  Stand-alone software systems (COTS) that are configured for use in a particular environment. 14Software Processes
  • 15. Process activities  Real software processes are inter-leaved sequences of technical, collaborative and managerial activities with the overall goal of specifying, designing, implementing and testing a software system.  The four basic process activities of specification, development, validation and evolution are organized differently in different development processes. In the waterfall model, they are organized in sequence, whereas in incremental development they are inter- leaved. 15Software Processes
  • 16. Software specification  The process of establishing what services are required and the constraints on the system’s operation and development.  Requirements engineering process  Feasibility study • Is it technically and financially feasible to build the system?  Requirements elicitation and analysis • What do the system stakeholders require or expect from the system?  Requirements specification • Defining the requirements in detail  Requirements validation • Checking the validity of the requirements 16Software Processes
  • 17. The requirements engineering process 17Software Processes
  • 18. Software design and implementation  The process of converting the system specification into an executable system.  Software design  Design a software structure that realises the specification;  Implementation  Translate this structure into an executable program;  The activities of design and implementation are closely related and may be inter-leaved. 18Software Processes
  • 19. A general model of the design process 19Software Processes
  • 20. Design activities  Architectural design, where you identify the overall structure of the system, the principal components (sometimes called sub-systems or modules), their relationships and how they are distributed.  Interface design, where you define the interfaces between system components.  Component design, where you take each system component and design how it will operate.  Database design, where you design the system data structures and how these are to be represented in a database. 20Software Processes
  • 21. Software validation  Verification and validation (V & V) is intended to show that a system conforms to its specification and meets the requirements of the system customer.  Involves checking and review processes and system testing.  System testing involves executing the system with test cases that are derived from the specification of the real data to be processed by the system.  Testing is the most commonly used V & V activity. 21Software Processes
  • 23. Testing stages  Development or component testing  Individual components are tested independently;  Components may be functions or objects or coherent groupings of these entities.  System testing  Testing of the system as a whole. Testing of emergent properties is particularly important.  Acceptance testing  Testing with customer data to check that the system meets the customer’s needs. 23Software Processes
  • 24. Testing phases in a plan-driven software process 24Software Processes
  • 25. Software evolution  Software is inherently flexible and can change.  As requirements change through changing business circumstances, the software that supports the business must also evolve and change.  Although there has been a demarcation between development and evolution (maintenance) this is increasingly irrelevant as fewer and fewer systems are completely new. 25Software Processes
  • 28. Coping with change  Change is inevitable in all large software projects.  Business changes lead to new and changed system requirements  New technologies open up new possibilities for improving implementations  Changing platforms require application changes  Change leads to rework so the costs of change include both rework (e.g. re-analyzing requirements) as well as the costs of implementing new functionality 28Software Processes
  • 29. Reducing the costs of rework  Change avoidance, where the software process includes activities that can anticipate possible changes before significant rework is required.  For example, a prototype system may be developed to show some key features of the system to customers.  Change tolerance, where the process is designed so that changes can be accommodated at relatively low cost.  This normally involves some form of incremental development. Proposed changes may be implemented in increments that have not yet been developed. If this is impossible, then only a single increment (a small part of the system) may have be altered to incorporate the change. 29Software Processes
  • 30. Software prototyping  A prototype is an initial version of a system used to demonstrate concepts and try out design options.  A prototype can be used in:  The requirements engineering process to help with requirements elicitation and validation;  In design processes to explore options and develop a UI design;  In the testing process to run back-to-back tests. 30Software Processes
  • 31. Benefits of prototyping  Improved system usability.  A closer match to users’ real needs.  Improved design quality.  Improved maintainability.  Reduced development effort. 31Software Processes
  • 32. The process of prototype development 32Software Processes
  • 33. Prototype development  May be based on rapid prototyping languages or tools  May involve leaving out functionality  Prototype should focus on areas of the product that are not well- understood;  Error checking and recovery may not be included in the prototype;  Focus on functional rather than non-functional requirements such as reliability and security Software Processes 33
  • 34. Throw-away prototypes  Prototypes should be discarded after development as they are not a good basis for a production system:  It may be impossible to tune the system to meet non-functional requirements;  Prototypes are normally undocumented;  The prototype structure is usually degraded through rapid change;  The prototype probably will not meet normal organisational quality standards. 34Software Processes
  • 35. Incremental delivery  Rather than deliver the system as a single delivery, the development and delivery is broken down into increments with each increment delivering part of the required functionality.  User requirements are prioritised and the highest priority requirements are included in early increments.  Once the development of an increment is started, the requirements are frozen though requirements for later increments can continue to evolve. 35Software Processes
  • 36. Incremental development and delivery  Incremental development  Develop the system in increments and evaluate each increment before proceeding to the development of the next increment;  Normal approach used in agile methods;  Evaluation done by user/customer proxy.  Incremental delivery  Deploy an increment for use by end-users;  More realistic evaluation about practical use of software;  Difficult to implement for replacement systems as increments have less functionality than the system being replaced. Software Processes 36
  • 38. Incremental delivery advantages  Customer value can be delivered with each increment so system functionality is available earlier.  Early increments act as a prototype to help elicit requirements for later increments.  Lower risk of overall project failure.  The highest priority system services tend to receive the most testing. 38Software Processes
  • 39. Incremental delivery problems  Most systems require a set of basic facilities that are used by different parts of the system.  As requirements are not defined in detail until an increment is to be implemented, it can be hard to identify common facilities that are needed by all increments.  The essence of iterative processes is that the specification is developed in conjunction with the software.  However, this conflicts with the procurement model of many organizations, where the complete system specification is part of the system development contract. 39Software Processes
  • 40. Spiral model  Process is represented as a spiral rather than as a sequence of activities with backtracking.  Each loop in the spiral represents a phase in the process.  No fixed phases such as specification or design - loops in the spiral are chosen depending on what is required.  Risks are explicitly assessed and resolved throughout the process. 40Software Processes
  • 41. Spiral model of the software process 41Software Processes
  • 42. Spiral model sectors  Objective setting  Specific objectives for the phase are identified.  Risk assessment and reduction  Risks are assessed and activities put in place to reduce the key risks.  Development and validation  A development model for the system is chosen which can be any of the generic models.  Planning  The project is reviewed and the next phase of the spiral is planned. 42Software Processes
  • 43. Spiral model usage  Spiral model has been very influential in helping people think about iteration in software processes and introducing the risk-driven approach to development.  In practice, however, the model is rarely used as published for practical software development. Software Processes 43
  • 44. The Rational Unified Process  A modern generic process derived from the work on the UML and associated process.  Brings together aspects of the 3 generic process models discussed previously.  Normally described from 3 perspectives  A dynamic perspective that shows phases over time;  A static perspective that shows process activities;  A practive perspective that suggests good practice. 44Software Processes
  • 45. Phases in the Rational Unified Process 45Software Processes
  • 46. RUP phases  Inception  Establish the business case for the system.  Elaboration  Develop an understanding of the problem domain and the system architecture.  Construction  System design, programming and testing.  Transition  Deploy the system in its operating environment. 46Software Processes
  • 47. RUP iteration  In-phase iteration  Each phase is iterative with results developed incrementally.  Cross-phase iteration  As shown by the loop in the RUP model, the whole set of phases may be enacted incrementally. Software Processes 47
  • 48. Static workflows in the Rational Unified Process Workflow Description Business modelling The business processes are modelled using business use cases. Requirements Actors who interact with the system are identified and use cases are developed to model the system requirements. Analysis and design A design model is created and documented using architectural models, component models, object models and sequence models. Implementation The components in the system are implemented and structured into implementation sub-systems. Automatic code generation from design models helps accelerate this process. 48Software Processes
  • 49. Static workflows in the Rational Unified Process Workflow Description Testing Testing is an iterative process that is carried out in conjunction with implementation. System testing follows the completion of the implementation. Deployment A product release is created, distributed to users and installed in their workplace. Configuration and change management This supporting workflow managed changes to the system (see Chapter 25). Project management This supporting workflow manages the system development (see Chapters 22 and 23). Environment This workflow is concerned with making appropriate software tools available to the software development team. 49Software Processes
  • 50. RUP good practice  Develop software iteratively  Plan increments based on customer priorities and deliver highest priority increments first.  Manage requirements  Explicitly document customer requirements and keep track of changes to these requirements.  Use component-based architectures  Organize the system architecture as a set of reusable components. 50Software Processes
  • 51. RUP good practice  Visually model software  Use graphical UML models to present static and dynamic views of the software.  Verify software quality  Ensure that the software meet’s organizational quality standards.  Control changes to software  Manage software changes using a change management system and configuration management tools. Software Processes 51
  翻译: