尊敬的 微信汇率:1円 ≈ 0.046166 元 支付宝汇率:1円 ≈ 0.046257元 [退出登录]
SlideShare a Scribd company logo
Waves
3. Statistics and Irregular Waves
Statistics and Irregular Waves
● Real wave fields are not regular
● Combination of many periods, heights, directions
● Design and simulation require realistic wave statistics:
‒ probability distribution of heights
‒ energy spectrum of frequencies (and directions)
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Measures of Wave Height
𝐻max Largest wave height in the sample 𝐻max = max
𝑖
(𝐻𝑖)
𝐻av Mean wave height 𝐻av =
1
𝑁
෍ 𝐻𝑖
𝐻rms Root-mean-square wave height 𝐻rms =
1
𝑁
෍ 𝐻𝑖
2
𝐻 Τ
1 3 Average of the highest 𝑁/3 waves 𝐻 Τ
1 3 =
1
𝑁/3
෍
1
𝑁/3
𝐻𝑖
𝐻𝑚0 Estimate based on the rms surface elevation 𝐻𝑚0 = 4 η2
Τ
1 2
𝐻𝑠 Significant wave height Either 𝐻 Τ
1 3 or 𝐻𝑚0
Measures of Wave Period
𝑇𝑠 Significant wave period (average of highest 𝑁/3 waves)
𝑇𝑝 Peak period (from peak frequency of energy spectrum)
𝑇𝑒
Energy period (period of a regular wave with same significant wave height and
power density; used in wave-energy prediction; derived from energy spectrum)
𝑇𝑧 Mean zero up-crossing period
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Probability Distribution of Wave Heights
For a narrow-banded frequency spectrum the Rayleigh probability distribution is
appropriate:
𝑃 height > 𝐻 = exp − Τ
(𝐻 )
𝐻rms
2
Cumulative distribution function:
𝐹 𝐻 = 𝑃 height < 𝐻 = 1 − e− Τ
𝐻 𝐻rms
2
Probability density function:
𝑓 𝐻 =
d𝐹
d𝐻
= 2
𝐻
𝐻rms
2 e− Τ
𝐻 𝐻rms
2
Rayleigh Distribution
𝐻av ≡ 𝐸 𝐻 = න
0
∞
𝐻 𝑓 𝐻 d𝐻
𝐻rms
2 ≡ 𝐸 𝐻2 = න
0
∞
𝐻2 𝑓 𝐻 d𝐻
𝐻av =
π
2
𝐻rms = 0.886 𝐻rms
𝐻 Τ
1 3 = 1.416 𝐻rms
𝐻 Τ
1 10 = 1.800 𝐻rms
𝐻 Τ
1 100 = 2.359 𝐻rms
Single parameter: 𝐻rms
𝑓 𝐻 = 2
𝐻
𝐻rms
2 e− Τ
𝐻 𝐻rms
2
Example
Near a pier, 400 consecutive wave heights are measured.
Assume that the sea state is narrow-banded.
(a) How many waves are expected to exceed 2𝐻rms?
(b) If the significant wave height is 2.5 m, what is 𝐻rms?
(c) Estimate the wave height exceeded by 80 waves.
(d) Estimate the number of waves with a height between
1.0 m and 3.0 m.
Near a pier, 400 consecutive wave heights are measured. Assume that the sea state is
narrow-banded.
(a) How many waves are expected to exceed 2𝐻rms?
(b) If the significant wave height is 2.5 m, what is 𝐻rms?
(c) Estimate the wave height exceeded by 80 waves.
(d) Estimate the number of waves with a height between 1.0 m and 3.0 m.
𝑃 height > 𝐻 = e− Τ
𝐻 𝐻rms
2
𝑃 height > 2𝐻rms = e−4
(a)
= 0.01832
In 400 waves, 𝑛 = 400 × 0.01832
𝐻 Τ
1 3 = 1.416 𝐻rms
(b)
2.5 = 1.416 𝐻rms
𝑯𝐫𝐦𝐬 = 𝟏. 𝟕𝟔𝟔 𝐦
(c) 𝑃 height > 𝐻 = e− Τ
𝐻 𝐻rms
2
=
80
400
= 0.2
𝐻/𝐻rms
2
= − ln 0.2
𝐻 = 𝐻rms × − ln 0.2 = 𝟐. 𝟐𝟒𝟎 𝐦
𝑃 1.0 < height < 3.0 = 𝑃 height > 1.0 − 𝑃 height > 3.0
= e− 1.0/𝐻rms
2
− e− 3.0/𝐻rms
2
= 0.6699
In 400 waves, 𝑛 = 400 × 0.6699
(d)
= 𝟕. 𝟑𝟐𝟖
= 𝟐𝟔𝟖. 𝟎
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Regular vs Irregular Waves
Regular wave:
- single frequency
Irregular wave:
- many frequencies
Wave energy depends on 𝜂2
Energy Spectrum
● “Spectral” means “by frequency”
● A spectrum is usually determined by a Fourier transform
● This splits a signal up into its component frequencies
● Energy in a wave is proportional to 𝜂2, where 𝜂 is surface
displacement
● The energy spectrum, or power spectrum, is the Fourier
transform of 𝜂2
Energy Spectrum
For regular waves (single frequency):
𝐸 =
1
2
𝜌𝑔𝐴2 = 𝜌𝑔 )
𝜂2(𝑡 =
1
8
𝜌𝑔𝐻2
For irregular waves (many frequencies):
𝑆 𝑓 d𝑓
න
𝑓1
𝑓2
𝑆 𝑓 d𝑓
is the “energy” in a small interval d𝑓 near frequency 𝑓
is the “energy” between frequencies 𝑓1 and 𝑓2
(strictly: energy/𝜌𝑔)
The energy spectrum 𝑆(𝑓) is determined by Fourier transforming 𝜂2
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
Model Spectra
Open ocean: Bretschneider spectrum
Fetch-limited seas: JONSWAP spectrum
Key parameters: peak frequency 𝑓𝑝 ( =1/(peak period, 𝑇𝑝) )
significant wave height 𝐻𝑚0
Model Spectra
Bretschneider spectrum:
JONSWAP spectrum:
𝑆 𝑓 =
5
16
𝐻𝑚0
2
𝑓𝑝
4
𝑓5
exp −
5
4
𝑓𝑝
4
𝑓4
𝑆 𝑓 = 𝐶 𝐻𝑚0
2
𝑓𝑝
4
𝑓5
exp −
5
4
𝑓𝑝
4
𝑓4
𝛾𝑏
𝜎 = ൝
0.07 𝑓 < 𝑓𝑝
0.09 𝑓 > 𝑓𝑝
𝑏 = exp −
1
2
Τ
𝑓 𝑓𝑝 − 1
𝜎
2
𝛾 = 3.3
Significant Wave Height, 𝑯𝒎𝟎
Bretschneider spectrum: 𝑆 𝑓 =
5
16
𝐻𝑚0
2
𝑓𝑝
4
𝑓5
exp −
5
4
𝑓𝑝
4
𝑓4
Total energy:
𝐸
𝜌𝑔
≡ න
0
∞
𝑆 𝑓 d𝑓 =
1
16
𝐻𝑚0
2
𝐻𝑚0 = 4 Τ
𝐸 𝜌 𝑔 = 4 )
η2(𝑡
Total energy for a regular wave:
𝐸
𝜌𝑔
=
1
8
𝐻rms
2
Same energy if 𝐻𝑚0 = 2𝐻𝑟𝑚𝑠 = 1.414𝐻rms
Rayleigh distribution: 𝐻 Τ
1 3 = 1.416𝐻rms
𝑯𝒎𝟎 and 𝑯 Τ
𝟏 𝟑 can be used synonymously for 𝑯𝒔 ...
… but 𝐻𝑚0 is easier to measure!
Finding Wave Parameters From a Spectrum
● Surface displacement 𝜂(𝑡) is measured (e.g. wave buoy)
● 𝜂2(𝑡) is Fourier-transformed to get energy spectrum 𝑆(𝑓)
● Height and period parameters are deduced from the peak and the moments
of the spectrum:
𝑚𝑛 = න
0
∞
𝑓𝑛
𝑆 𝑓 d𝑓
Peak period: 𝑇𝑝 =
1
𝑓𝑝
Significant wave height: 𝐻𝑠 = 𝐻𝑚0 = 4 𝑚0
Energy period: 𝑇𝑒 =
𝑚−1
𝑚0
Multi-Modal Spectra
frequency f (Hz)
spectral
density
S
(m^2
s)
swell
wind
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Using a Spectrum To Generate a Wave Field
η 𝑡 = ෍ )
𝑎𝑖 cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 − 𝜙𝑖
amplitude
𝑆 𝑓𝑖 Δ𝑓 = 𝐸𝑖 =
1
2
𝑎𝑖
2
𝑎𝑖 = 2𝑆 𝑓𝑖 Δ𝑓
(angular) frequency
𝜔𝑖 = 2π𝑓𝑖
wavenumber
𝜔𝑖
2
= 𝑔𝑘𝑖 tanh 𝑘𝑖ℎ
random phase
Simulated Wave Field
𝑇𝑝 = 8 s
𝐻𝑠 = 1.0 m
ℎ = 30 m
Regular waves:
Irregular waves:
Focused waves:
Example
An irregular wavefield at a deep-water location is characterised
by peak period of 8.7 s and significant wave height of 1.5 m.
(a) Provide a sketch of a Bretschneider spectrum, labelling both
axes with variables and units and indicating the frequencies
corresponding to both the peak period and the energy period.
Note: Calculations are not needed for this part.
(b) Determine the power density (in kW m–1) of a regular wave
component with frequency 0.125 Hz that represents the
frequency range 0.12 to 0.13 Hz of the irregular wave field.
An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and
significant wave height of 1.5 m.
(a) Provide a sketch of a Bretschneider spectrum, labelling both axes with variables and units
and indicating the frequencies corresponding to both the peak period and the energy
period.
frequency f (Hz)
spectral
density
S
(m^2
s)
fp fe
An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and
significant wave height of 1.5 m.
(b) Determine the power density (in kW m–1) of a regular wave component with frequency
0.125 Hz that represents the frequency range 0.12 to 0.13 Hz of the irregular wave field.
𝑓 = 0.125 Hz
Δ𝑓 = 0.01 Hz
𝑇𝑝 = 8.7 s 𝐻𝑠 = 1.5 m
𝑓𝑝 =
1
𝑇𝑝
𝑆 𝑓 = 1.645 m2 s
𝐸 = 𝜌𝑔 × 𝑆 𝑓 Δ𝑓
𝑃 = 𝐸𝑐𝑔 = 𝐸(𝑛𝑐) Deep water: 𝑛 =
1
2
𝑐 =
𝑔𝑇
2π
𝑇 =
1
𝑓
= 8 s
𝑷 = 𝟏. 𝟎𝟑𝟑 𝐤𝐖 𝐦−𝟏
= 0.1149 Hz
= 165.4 J m−2
= 12.49 m s−1
𝑆 𝑓 =
5
16
𝐻𝑠
2
𝑓𝑝
4
𝑓5
ex p( −
5
4
𝑓𝑝
4
𝑓4
)
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Terminology
A wave climate or sea state is a model wave spectrum, usually
defined by a representative height and period, for use in:
● forecasting (from a weather forecast in advance)
● nowcasting (from ongoing weather)
● hindcasting (reconstruction from previous event)
Prediction of Sea State
Require: significant wave height, 𝐻𝑠
significant wave period, 𝑇𝑠 (or peak period, 𝑇𝑝)
Depend on: wind speed, 𝑈
fetch, 𝐹
duration, 𝑡
gravity, 𝑔
Dimensional analysis:
Empirical functions: JONSWAP or SMB curves
൰
𝑔𝐻𝑠
𝑈2
= function(
𝑔𝐹
𝑈2
,
𝑔𝑡
𝑈
ቇ
𝑔𝑇𝑝
𝑈
= function(
𝑔𝐹
𝑈2
,
𝑔𝑡
𝑈
Fetch-Limited vs Duration-Limited
distance travelled by wave energy greater than fetch F
F
distance travelled by wave energy less than fetch F
F
Feff
FETCH-LIMITED
DURATION-LIMITED
JONSWAP Curves
For fetch-limited waves:
𝑔𝐻𝑠
𝑈2
= 0.0016
𝑔𝐹
𝑈2
Τ
1 2
(up to maximum 0.2433)
𝑔𝑇𝑝
𝑈
= 0.286
𝑔𝐹
𝑈2
Τ
1 3
(up to maximum 8.134)
Waves are fetch-limited provided the storm has blown for a minimum time
𝑡𝑚𝑖𝑛 given by
𝑔𝑡
𝑈 min
= 68.8
𝑔𝐹
𝑈2
Τ
2 3
up to maximum 7.15 × 104
Otherwise the waves are duration-limited, and the fetch used to determine
height and period is an effective fetch determined by inversion using the actual
storm duration 𝑡:
𝑔𝐹
𝑈2
eff
=
1
68.8
𝑔𝑡
𝑈
Τ
3 2
JONSWAP Curves (reprise)
෡
𝐻𝑠 = 0.0016 ෠
𝐹 Τ
1 2
෠
𝑇𝑝 = 0.286 ෠
𝐹 Τ
1 3
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
෠
𝐹 ≡
𝑔𝐹
𝑈2
, Ƹ
𝑡 ≡
𝑔𝑡
𝑈
, ෡
𝐻𝑠 ≡
𝑔𝐻𝑠
𝑈2
, ෠
𝑇𝑝 ≡
𝑔𝑇𝑝
𝑈
JONSWAP and SMB Curves
Solid lines: JONSWAP
Dashed lines: SMB
Example
(a) Wind has blown at a consistent 𝑈 = 20 m s−1
over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs .
Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves.
(b) If the wind blows steadily for another 4 hours
what are 𝐻𝑠 and 𝑇𝑝?
(a) Wind has blown at a consistent 𝑈 = 20 m s−1
over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs.
Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves.
𝑈 = 20 m s−1
𝐹 = 105 m
𝑡 = 6 × 3600 = 21600 s
෠
𝐹 ≡
𝑔𝐹
𝑈2
Ƹ
𝑡 =
𝑔𝑡
𝑈
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
= 12510
෡
𝐻𝑠 = 0.0016 ෠
𝐹1/2
෠
𝑇𝑝 = 0.286 ෠
𝐹1/3
෠
𝐹 ≡
𝑔𝐹
𝑈2
Ƹ
𝑡 ≡
𝑔𝑡
𝑈
෡
𝐻𝑠 ≡
𝑔𝐻𝑠
𝑈2
Duration-limited
෠
𝐹eff =
Ƹ
𝑡
68.8
Τ
3 2
෡
𝐻𝑠 = 0.0016 ෠
𝐹eff
Τ
1 2
෠
𝑇𝑝 = 0.286 ෠
𝐹eff
Τ
1 3
𝐻𝑠 = ෡
𝐻𝑠 ×
𝑈2
𝑔
𝑇𝑝 = ෠
𝑇𝑝 ×
𝑈
𝑔
= 1910
= 0.06993
= 3.548
= 𝟐. 𝟖𝟓𝟏 𝐦
= 𝟕. 𝟐𝟑𝟑 𝐬
= 2453
= 10590
(b) If the wind blows steadily for another 4 hours what are 𝐻𝑠 and 𝑇𝑝?
𝑈 = 20 m s−1
𝐹 = 105 m
𝑡 = 10 × 3600 = 36000 s
෠
𝐹 = 2453
Ƹ
𝑡 =
𝑔𝑡
𝑈
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
Ƹ
𝑡min = 12510
෡
𝐻𝑠 = 0.0016 ෠
𝐹1/2
෠
𝑇𝑝 = 0.286 ෠
𝐹1/3
෠
𝐹 ≡
𝑔𝐹
𝑈2
Ƹ
𝑡 ≡
𝑔𝑡
𝑈
෡
𝐻𝑠 ≡
𝑔𝐻𝑠
𝑈2
Fetch-limited
෡
𝐻𝑠 = 0.0016 ෠
𝐹1/2
෠
𝑇𝑝 = 0.286 ෠
𝐹1/3
𝐻𝑠 = ෡
𝐻𝑠 ×
𝑈2
𝑔
𝑇𝑝 = ෠
𝑇𝑝 ×
𝑈
𝑔
= 0.07924
= 3.857
= 𝟑. 𝟐𝟑𝟏 𝐦
= 𝟕. 𝟖𝟔𝟑 𝐬
= 17660

More Related Content

What's hot

Emergency ejection system in military aircraft report
Emergency ejection system in military aircraft   reportEmergency ejection system in military aircraft   report
Emergency ejection system in military aircraft report
Lahiru Dilshan
 
Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01
Rimple Mahey
 
Introduction to Wavelet Transform with Applications to DSP
Introduction to Wavelet Transform with Applications to DSPIntroduction to Wavelet Transform with Applications to DSP
Introduction to Wavelet Transform with Applications to DSP
Hicham Berkouk
 
buoyantBousinessqSimpleFoam
buoyantBousinessqSimpleFoambuoyantBousinessqSimpleFoam
buoyantBousinessqSimpleFoam
Milad Sm
 
Lab eight midlatitude cyclones
Lab eight midlatitude cyclonesLab eight midlatitude cyclones
Lab eight midlatitude cyclones
Lisa Schmidt
 
Atmospheric Turbulence
Atmospheric TurbulenceAtmospheric Turbulence
Atmospheric Turbulence
Johnaton McAdam
 
Waves in 2 Dimensions
Waves in 2 DimensionsWaves in 2 Dimensions
Waves in 2 Dimensions
Bruce Coulter
 
Characteristics of boundary layer flow
Characteristics of boundary layer flowCharacteristics of boundary layer flow
Characteristics of boundary layer flow
Tuong Do
 
Wave mechanics
Wave mechanicsWave mechanics
Wave mechanics
Spencilian
 
Forecasting the weather powerpoint
Forecasting the weather powerpointForecasting the weather powerpoint
Forecasting the weather powerpoint
kathryngraham
 
Waves
WavesWaves
Other types of waves powerpoint
Other types of waves powerpointOther types of waves powerpoint
Other types of waves powerpoint
Smithtown High School West
 
Rigid Body Dynamic
Rigid Body DynamicRigid Body Dynamic
Rigid Body Dynamic
Nabeh Wildan
 
Cfx12 09 turbulence
Cfx12 09 turbulenceCfx12 09 turbulence
Cfx12 09 turbulence
Marcushuynh66
 
Aircraft Charter Brochure
Aircraft Charter Brochure Aircraft Charter Brochure
Aircraft Charter Brochure
Ocean Sky The Private Jet company
 
Fourier transform
Fourier transformFourier transform
Fourier transform
Solo Hermelin
 
Chapter 17 – meteorology
Chapter 17 – meteorologyChapter 17 – meteorology
Chapter 17 – meteorology
Annie cox
 
Guided Wave Propagation Simulation by ANSYS
Guided Wave Propagation Simulation by ANSYS Guided Wave Propagation Simulation by ANSYS
Guided Wave Propagation Simulation by ANSYS
Ping Hung Lee
 
DSD-INT 2018 Using XBeach for estimating wave conditions inside harbors - Seq...
DSD-INT 2018 Using XBeach for estimating wave conditions inside harbors - Seq...DSD-INT 2018 Using XBeach for estimating wave conditions inside harbors - Seq...
DSD-INT 2018 Using XBeach for estimating wave conditions inside harbors - Seq...
Deltares
 
Tsunami
TsunamiTsunami
Tsunami
Manisha Keim
 

What's hot (20)

Emergency ejection system in military aircraft report
Emergency ejection system in military aircraft   reportEmergency ejection system in military aircraft   report
Emergency ejection system in military aircraft report
 
Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01
 
Introduction to Wavelet Transform with Applications to DSP
Introduction to Wavelet Transform with Applications to DSPIntroduction to Wavelet Transform with Applications to DSP
Introduction to Wavelet Transform with Applications to DSP
 
buoyantBousinessqSimpleFoam
buoyantBousinessqSimpleFoambuoyantBousinessqSimpleFoam
buoyantBousinessqSimpleFoam
 
Lab eight midlatitude cyclones
Lab eight midlatitude cyclonesLab eight midlatitude cyclones
Lab eight midlatitude cyclones
 
Atmospheric Turbulence
Atmospheric TurbulenceAtmospheric Turbulence
Atmospheric Turbulence
 
Waves in 2 Dimensions
Waves in 2 DimensionsWaves in 2 Dimensions
Waves in 2 Dimensions
 
Characteristics of boundary layer flow
Characteristics of boundary layer flowCharacteristics of boundary layer flow
Characteristics of boundary layer flow
 
Wave mechanics
Wave mechanicsWave mechanics
Wave mechanics
 
Forecasting the weather powerpoint
Forecasting the weather powerpointForecasting the weather powerpoint
Forecasting the weather powerpoint
 
Waves
WavesWaves
Waves
 
Other types of waves powerpoint
Other types of waves powerpointOther types of waves powerpoint
Other types of waves powerpoint
 
Rigid Body Dynamic
Rigid Body DynamicRigid Body Dynamic
Rigid Body Dynamic
 
Cfx12 09 turbulence
Cfx12 09 turbulenceCfx12 09 turbulence
Cfx12 09 turbulence
 
Aircraft Charter Brochure
Aircraft Charter Brochure Aircraft Charter Brochure
Aircraft Charter Brochure
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Chapter 17 – meteorology
Chapter 17 – meteorologyChapter 17 – meteorology
Chapter 17 – meteorology
 
Guided Wave Propagation Simulation by ANSYS
Guided Wave Propagation Simulation by ANSYS Guided Wave Propagation Simulation by ANSYS
Guided Wave Propagation Simulation by ANSYS
 
DSD-INT 2018 Using XBeach for estimating wave conditions inside harbors - Seq...
DSD-INT 2018 Using XBeach for estimating wave conditions inside harbors - Seq...DSD-INT 2018 Using XBeach for estimating wave conditions inside harbors - Seq...
DSD-INT 2018 Using XBeach for estimating wave conditions inside harbors - Seq...
 
Tsunami
TsunamiTsunami
Tsunami
 

Similar to slidesWaveStatistics.pdf

Extended abstract
Extended abstractExtended abstract
Extended abstract
André Figueira Martins
 
01_Warren (1).ppt
01_Warren (1).ppt01_Warren (1).ppt
01_Warren (1).ppt
ssuser61f95d
 
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
KrishnaKorankar
 
ac slides type 2.pdf
ac slides type 2.pdfac slides type 2.pdf
ac slides type 2.pdf
17111ASIFNOORJAMEE
 
AGU2014-SA31B-4098
AGU2014-SA31B-4098AGU2014-SA31B-4098
AGU2014-SA31B-4098
Jonathan Pugmire
 
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptxgvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
DEEPAKCHAURASIYA37
 
Introduction of travelling wave & magnetrons
Introduction of travelling wave & magnetronsIntroduction of travelling wave & magnetrons
Introduction of travelling wave & magnetrons
VISHNUBEN
 
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbWAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
chettanagarwal
 
Chapter 2 wave and tides with examples
Chapter  2 wave and tides with examplesChapter  2 wave and tides with examples
Chapter 2 wave and tides with examples
Mohsin Siddique
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptx
RowelVeridianoEngres
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptx
RowelEngreso3
 
WavesNotesAnswers.pdf
WavesNotesAnswers.pdfWavesNotesAnswers.pdf
WavesNotesAnswers.pdf
cfisicaster
 
DLA_Presentation
DLA_PresentationDLA_Presentation
DLA_Presentation
Alan Sanchez
 
ultrasonic
ultrasonicultrasonic
ultrasonic
stanley christy
 
WaReS Validation Report
WaReS Validation ReportWaReS Validation Report
WaReS Validation Report
Marine Analytica
 
Ultrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptxUltrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptx
Sudha durairaj
 
3 wave representations
3 wave representations3 wave representations
3 wave representations
MissingWaldo
 
Fukao Plenary.ppt
Fukao Plenary.pptFukao Plenary.ppt
Fukao Plenary.ppt
grssieee
 
Seismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysisSeismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysis
Somak Hajra
 
Phys 101 lo3
Phys 101 lo3 Phys 101 lo3
Phys 101 lo3
Alvin Parappilly
 

Similar to slidesWaveStatistics.pdf (20)

Extended abstract
Extended abstractExtended abstract
Extended abstract
 
01_Warren (1).ppt
01_Warren (1).ppt01_Warren (1).ppt
01_Warren (1).ppt
 
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
 
ac slides type 2.pdf
ac slides type 2.pdfac slides type 2.pdf
ac slides type 2.pdf
 
AGU2014-SA31B-4098
AGU2014-SA31B-4098AGU2014-SA31B-4098
AGU2014-SA31B-4098
 
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptxgvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
 
Introduction of travelling wave & magnetrons
Introduction of travelling wave & magnetronsIntroduction of travelling wave & magnetrons
Introduction of travelling wave & magnetrons
 
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbWAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
 
Chapter 2 wave and tides with examples
Chapter  2 wave and tides with examplesChapter  2 wave and tides with examples
Chapter 2 wave and tides with examples
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptx
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptx
 
WavesNotesAnswers.pdf
WavesNotesAnswers.pdfWavesNotesAnswers.pdf
WavesNotesAnswers.pdf
 
DLA_Presentation
DLA_PresentationDLA_Presentation
DLA_Presentation
 
ultrasonic
ultrasonicultrasonic
ultrasonic
 
WaReS Validation Report
WaReS Validation ReportWaReS Validation Report
WaReS Validation Report
 
Ultrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptxUltrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptx
 
3 wave representations
3 wave representations3 wave representations
3 wave representations
 
Fukao Plenary.ppt
Fukao Plenary.pptFukao Plenary.ppt
Fukao Plenary.ppt
 
Seismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysisSeismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysis
 
Phys 101 lo3
Phys 101 lo3 Phys 101 lo3
Phys 101 lo3
 

More from cfisicaster

slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
cfisicaster
 
WavesLoading.pdf
WavesLoading.pdfWavesLoading.pdf
WavesLoading.pdf
cfisicaster
 
WavesTransformation.pdf
WavesTransformation.pdfWavesTransformation.pdf
WavesTransformation.pdf
cfisicaster
 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdf
cfisicaster
 
WavesExamplesAnswers.pdf
WavesExamplesAnswers.pdfWavesExamplesAnswers.pdf
WavesExamplesAnswers.pdf
cfisicaster
 
slidesWaveLoading.pdf
slidesWaveLoading.pdfslidesWaveLoading.pdf
slidesWaveLoading.pdf
cfisicaster
 
WavesExamples.pdf
WavesExamples.pdfWavesExamples.pdf
WavesExamples.pdf
cfisicaster
 
WavesSchedule.pdf
WavesSchedule.pdfWavesSchedule.pdf
WavesSchedule.pdf
cfisicaster
 
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
cfisicaster
 
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdfMario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
cfisicaster
 
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
cfisicaster
 
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
cfisicaster
 
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
cfisicaster
 
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
cfisicaster
 
Fisica2.pdf
Fisica2.pdfFisica2.pdf
Fisica2.pdf
cfisicaster
 
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdfProblemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
cfisicaster
 
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
cfisicaster
 
TOC_6320_01_01.pdf
TOC_6320_01_01.pdfTOC_6320_01_01.pdf
TOC_6320_01_01.pdf
cfisicaster
 
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
cfisicaster
 
TOC_4108_02_05.pdf
TOC_4108_02_05.pdfTOC_4108_02_05.pdf
TOC_4108_02_05.pdf
cfisicaster
 

More from cfisicaster (20)

slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
 
WavesLoading.pdf
WavesLoading.pdfWavesLoading.pdf
WavesLoading.pdf
 
WavesTransformation.pdf
WavesTransformation.pdfWavesTransformation.pdf
WavesTransformation.pdf
 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdf
 
WavesExamplesAnswers.pdf
WavesExamplesAnswers.pdfWavesExamplesAnswers.pdf
WavesExamplesAnswers.pdf
 
slidesWaveLoading.pdf
slidesWaveLoading.pdfslidesWaveLoading.pdf
slidesWaveLoading.pdf
 
WavesExamples.pdf
WavesExamples.pdfWavesExamples.pdf
WavesExamples.pdf
 
WavesSchedule.pdf
WavesSchedule.pdfWavesSchedule.pdf
WavesSchedule.pdf
 
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
 
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdfMario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
 
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
 
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
 
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
 
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
 
Fisica2.pdf
Fisica2.pdfFisica2.pdf
Fisica2.pdf
 
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdfProblemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
 
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
 
TOC_6320_01_01.pdf
TOC_6320_01_01.pdfTOC_6320_01_01.pdf
TOC_6320_01_01.pdf
 
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
 
TOC_4108_02_05.pdf
TOC_4108_02_05.pdfTOC_4108_02_05.pdf
TOC_4108_02_05.pdf
 

Recently uploaded

Call Girls Madurai 8824825030 Escort In Madurai service 24X7
Call Girls Madurai 8824825030 Escort In Madurai service 24X7Call Girls Madurai 8824825030 Escort In Madurai service 24X7
Call Girls Madurai 8824825030 Escort In Madurai service 24X7
Poonam Singh
 
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
Tsuyoshi Horigome
 
❣Unsatisfied Bhabhi Call Girls Surat 💯Call Us 🔝 7014168258 🔝💃Independent Sura...
❣Unsatisfied Bhabhi Call Girls Surat 💯Call Us 🔝 7014168258 🔝💃Independent Sura...❣Unsatisfied Bhabhi Call Girls Surat 💯Call Us 🔝 7014168258 🔝💃Independent Sura...
❣Unsatisfied Bhabhi Call Girls Surat 💯Call Us 🔝 7014168258 🔝💃Independent Sura...
hotchicksescort
 
Call Girls Chandigarh 🔥 7014168258 🔥 Real Fun With Sexual Girl Available 24/7...
Call Girls Chandigarh 🔥 7014168258 🔥 Real Fun With Sexual Girl Available 24/7...Call Girls Chandigarh 🔥 7014168258 🔥 Real Fun With Sexual Girl Available 24/7...
Call Girls Chandigarh 🔥 7014168258 🔥 Real Fun With Sexual Girl Available 24/7...
shourabjaat424
 
FUNDAMENTALS OF MECHANICAL ENGINEERING.pdf
FUNDAMENTALS OF MECHANICAL ENGINEERING.pdfFUNDAMENTALS OF MECHANICAL ENGINEERING.pdf
FUNDAMENTALS OF MECHANICAL ENGINEERING.pdf
EMERSON EDUARDO RODRIGUES
 
Technological Innovation Management And Entrepreneurship-1.pdf
Technological Innovation Management And Entrepreneurship-1.pdfTechnological Innovation Management And Entrepreneurship-1.pdf
Technological Innovation Management And Entrepreneurship-1.pdf
tanujaharish2
 
BBOC407 Module 1.pptx Biology for Engineers
BBOC407  Module 1.pptx Biology for EngineersBBOC407  Module 1.pptx Biology for Engineers
BBOC407 Module 1.pptx Biology for Engineers
sathishkumars808912
 
Call Girls Goa (india) ☎️ +91-7426014248 Goa Call Girl
Call Girls Goa (india) ☎️ +91-7426014248 Goa Call GirlCall Girls Goa (india) ☎️ +91-7426014248 Goa Call Girl
Call Girls Goa (india) ☎️ +91-7426014248 Goa Call Girl
sapna sharmap11
 
MODULE 5 BIOLOGY FOR ENGINEERS TRENDS IN BIO ENGINEERING.pptx
MODULE 5 BIOLOGY FOR ENGINEERS TRENDS IN BIO ENGINEERING.pptxMODULE 5 BIOLOGY FOR ENGINEERS TRENDS IN BIO ENGINEERING.pptx
MODULE 5 BIOLOGY FOR ENGINEERS TRENDS IN BIO ENGINEERING.pptx
NaveenNaveen726446
 
Covid Management System Project Report.pdf
Covid Management System Project Report.pdfCovid Management System Project Report.pdf
Covid Management System Project Report.pdf
Kamal Acharya
 
Online train ticket booking system project.pdf
Online train ticket booking system project.pdfOnline train ticket booking system project.pdf
Online train ticket booking system project.pdf
Kamal Acharya
 
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdfSELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
Pallavi Sharma
 
Call Girls In Lucknow 🔥 +91-7014168258🔥High Profile Call Girl Lucknow
Call Girls In Lucknow 🔥 +91-7014168258🔥High Profile Call Girl LucknowCall Girls In Lucknow 🔥 +91-7014168258🔥High Profile Call Girl Lucknow
Call Girls In Lucknow 🔥 +91-7014168258🔥High Profile Call Girl Lucknow
yogita singh$A17
 
一比一原版(psu学位证书)美国匹兹堡州立大学毕业证如何办理
一比一原版(psu学位证书)美国匹兹堡州立大学毕业证如何办理一比一原版(psu学位证书)美国匹兹堡州立大学毕业证如何办理
一比一原版(psu学位证书)美国匹兹堡州立大学毕业证如何办理
nonods
 
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
DharmaBanothu
 
paper relate Chozhavendhan et al. 2020.pdf
paper relate Chozhavendhan et al. 2020.pdfpaper relate Chozhavendhan et al. 2020.pdf
paper relate Chozhavendhan et al. 2020.pdf
ShurooqTaib
 
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASICINTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
GOKULKANNANMMECLECTC
 
The Differences between Schedule 40 PVC Conduit Pipe and Schedule 80 PVC Conduit
The Differences between Schedule 40 PVC Conduit Pipe and Schedule 80 PVC ConduitThe Differences between Schedule 40 PVC Conduit Pipe and Schedule 80 PVC Conduit
The Differences between Schedule 40 PVC Conduit Pipe and Schedule 80 PVC Conduit
Guangdong Ctube Industry Co., Ltd.
 
🔥Young College Call Girls Chandigarh 💯Call Us 🔝 7737669865 🔝💃Independent Chan...
🔥Young College Call Girls Chandigarh 💯Call Us 🔝 7737669865 🔝💃Independent Chan...🔥Young College Call Girls Chandigarh 💯Call Us 🔝 7737669865 🔝💃Independent Chan...
🔥Young College Call Girls Chandigarh 💯Call Us 🔝 7737669865 🔝💃Independent Chan...
sonamrawat5631
 
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdfAsymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
felixwold
 

Recently uploaded (20)

Call Girls Madurai 8824825030 Escort In Madurai service 24X7
Call Girls Madurai 8824825030 Escort In Madurai service 24X7Call Girls Madurai 8824825030 Escort In Madurai service 24X7
Call Girls Madurai 8824825030 Escort In Madurai service 24X7
 
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
 
❣Unsatisfied Bhabhi Call Girls Surat 💯Call Us 🔝 7014168258 🔝💃Independent Sura...
❣Unsatisfied Bhabhi Call Girls Surat 💯Call Us 🔝 7014168258 🔝💃Independent Sura...❣Unsatisfied Bhabhi Call Girls Surat 💯Call Us 🔝 7014168258 🔝💃Independent Sura...
❣Unsatisfied Bhabhi Call Girls Surat 💯Call Us 🔝 7014168258 🔝💃Independent Sura...
 
Call Girls Chandigarh 🔥 7014168258 🔥 Real Fun With Sexual Girl Available 24/7...
Call Girls Chandigarh 🔥 7014168258 🔥 Real Fun With Sexual Girl Available 24/7...Call Girls Chandigarh 🔥 7014168258 🔥 Real Fun With Sexual Girl Available 24/7...
Call Girls Chandigarh 🔥 7014168258 🔥 Real Fun With Sexual Girl Available 24/7...
 
FUNDAMENTALS OF MECHANICAL ENGINEERING.pdf
FUNDAMENTALS OF MECHANICAL ENGINEERING.pdfFUNDAMENTALS OF MECHANICAL ENGINEERING.pdf
FUNDAMENTALS OF MECHANICAL ENGINEERING.pdf
 
Technological Innovation Management And Entrepreneurship-1.pdf
Technological Innovation Management And Entrepreneurship-1.pdfTechnological Innovation Management And Entrepreneurship-1.pdf
Technological Innovation Management And Entrepreneurship-1.pdf
 
BBOC407 Module 1.pptx Biology for Engineers
BBOC407  Module 1.pptx Biology for EngineersBBOC407  Module 1.pptx Biology for Engineers
BBOC407 Module 1.pptx Biology for Engineers
 
Call Girls Goa (india) ☎️ +91-7426014248 Goa Call Girl
Call Girls Goa (india) ☎️ +91-7426014248 Goa Call GirlCall Girls Goa (india) ☎️ +91-7426014248 Goa Call Girl
Call Girls Goa (india) ☎️ +91-7426014248 Goa Call Girl
 
MODULE 5 BIOLOGY FOR ENGINEERS TRENDS IN BIO ENGINEERING.pptx
MODULE 5 BIOLOGY FOR ENGINEERS TRENDS IN BIO ENGINEERING.pptxMODULE 5 BIOLOGY FOR ENGINEERS TRENDS IN BIO ENGINEERING.pptx
MODULE 5 BIOLOGY FOR ENGINEERS TRENDS IN BIO ENGINEERING.pptx
 
Covid Management System Project Report.pdf
Covid Management System Project Report.pdfCovid Management System Project Report.pdf
Covid Management System Project Report.pdf
 
Online train ticket booking system project.pdf
Online train ticket booking system project.pdfOnline train ticket booking system project.pdf
Online train ticket booking system project.pdf
 
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdfSELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
 
Call Girls In Lucknow 🔥 +91-7014168258🔥High Profile Call Girl Lucknow
Call Girls In Lucknow 🔥 +91-7014168258🔥High Profile Call Girl LucknowCall Girls In Lucknow 🔥 +91-7014168258🔥High Profile Call Girl Lucknow
Call Girls In Lucknow 🔥 +91-7014168258🔥High Profile Call Girl Lucknow
 
一比一原版(psu学位证书)美国匹兹堡州立大学毕业证如何办理
一比一原版(psu学位证书)美国匹兹堡州立大学毕业证如何办理一比一原版(psu学位证书)美国匹兹堡州立大学毕业证如何办理
一比一原版(psu学位证书)美国匹兹堡州立大学毕业证如何办理
 
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
 
paper relate Chozhavendhan et al. 2020.pdf
paper relate Chozhavendhan et al. 2020.pdfpaper relate Chozhavendhan et al. 2020.pdf
paper relate Chozhavendhan et al. 2020.pdf
 
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASICINTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
 
The Differences between Schedule 40 PVC Conduit Pipe and Schedule 80 PVC Conduit
The Differences between Schedule 40 PVC Conduit Pipe and Schedule 80 PVC ConduitThe Differences between Schedule 40 PVC Conduit Pipe and Schedule 80 PVC Conduit
The Differences between Schedule 40 PVC Conduit Pipe and Schedule 80 PVC Conduit
 
🔥Young College Call Girls Chandigarh 💯Call Us 🔝 7737669865 🔝💃Independent Chan...
🔥Young College Call Girls Chandigarh 💯Call Us 🔝 7737669865 🔝💃Independent Chan...🔥Young College Call Girls Chandigarh 💯Call Us 🔝 7737669865 🔝💃Independent Chan...
🔥Young College Call Girls Chandigarh 💯Call Us 🔝 7737669865 🔝💃Independent Chan...
 
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdfAsymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
 

slidesWaveStatistics.pdf

  • 1. Waves 3. Statistics and Irregular Waves
  • 2. Statistics and Irregular Waves ● Real wave fields are not regular ● Combination of many periods, heights, directions ● Design and simulation require realistic wave statistics: ‒ probability distribution of heights ‒ energy spectrum of frequencies (and directions)
  • 3. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 4. Measures of Wave Height 𝐻max Largest wave height in the sample 𝐻max = max 𝑖 (𝐻𝑖) 𝐻av Mean wave height 𝐻av = 1 𝑁 ෍ 𝐻𝑖 𝐻rms Root-mean-square wave height 𝐻rms = 1 𝑁 ෍ 𝐻𝑖 2 𝐻 Τ 1 3 Average of the highest 𝑁/3 waves 𝐻 Τ 1 3 = 1 𝑁/3 ෍ 1 𝑁/3 𝐻𝑖 𝐻𝑚0 Estimate based on the rms surface elevation 𝐻𝑚0 = 4 η2 Τ 1 2 𝐻𝑠 Significant wave height Either 𝐻 Τ 1 3 or 𝐻𝑚0
  • 5. Measures of Wave Period 𝑇𝑠 Significant wave period (average of highest 𝑁/3 waves) 𝑇𝑝 Peak period (from peak frequency of energy spectrum) 𝑇𝑒 Energy period (period of a regular wave with same significant wave height and power density; used in wave-energy prediction; derived from energy spectrum) 𝑇𝑧 Mean zero up-crossing period
  • 6. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 7. Probability Distribution of Wave Heights For a narrow-banded frequency spectrum the Rayleigh probability distribution is appropriate: 𝑃 height > 𝐻 = exp − Τ (𝐻 ) 𝐻rms 2 Cumulative distribution function: 𝐹 𝐻 = 𝑃 height < 𝐻 = 1 − e− Τ 𝐻 𝐻rms 2 Probability density function: 𝑓 𝐻 = d𝐹 d𝐻 = 2 𝐻 𝐻rms 2 e− Τ 𝐻 𝐻rms 2
  • 8. Rayleigh Distribution 𝐻av ≡ 𝐸 𝐻 = න 0 ∞ 𝐻 𝑓 𝐻 d𝐻 𝐻rms 2 ≡ 𝐸 𝐻2 = න 0 ∞ 𝐻2 𝑓 𝐻 d𝐻 𝐻av = π 2 𝐻rms = 0.886 𝐻rms 𝐻 Τ 1 3 = 1.416 𝐻rms 𝐻 Τ 1 10 = 1.800 𝐻rms 𝐻 Τ 1 100 = 2.359 𝐻rms Single parameter: 𝐻rms 𝑓 𝐻 = 2 𝐻 𝐻rms 2 e− Τ 𝐻 𝐻rms 2
  • 9. Example Near a pier, 400 consecutive wave heights are measured. Assume that the sea state is narrow-banded. (a) How many waves are expected to exceed 2𝐻rms? (b) If the significant wave height is 2.5 m, what is 𝐻rms? (c) Estimate the wave height exceeded by 80 waves. (d) Estimate the number of waves with a height between 1.0 m and 3.0 m.
  • 10. Near a pier, 400 consecutive wave heights are measured. Assume that the sea state is narrow-banded. (a) How many waves are expected to exceed 2𝐻rms? (b) If the significant wave height is 2.5 m, what is 𝐻rms? (c) Estimate the wave height exceeded by 80 waves. (d) Estimate the number of waves with a height between 1.0 m and 3.0 m. 𝑃 height > 𝐻 = e− Τ 𝐻 𝐻rms 2 𝑃 height > 2𝐻rms = e−4 (a) = 0.01832 In 400 waves, 𝑛 = 400 × 0.01832 𝐻 Τ 1 3 = 1.416 𝐻rms (b) 2.5 = 1.416 𝐻rms 𝑯𝐫𝐦𝐬 = 𝟏. 𝟕𝟔𝟔 𝐦 (c) 𝑃 height > 𝐻 = e− Τ 𝐻 𝐻rms 2 = 80 400 = 0.2 𝐻/𝐻rms 2 = − ln 0.2 𝐻 = 𝐻rms × − ln 0.2 = 𝟐. 𝟐𝟒𝟎 𝐦 𝑃 1.0 < height < 3.0 = 𝑃 height > 1.0 − 𝑃 height > 3.0 = e− 1.0/𝐻rms 2 − e− 3.0/𝐻rms 2 = 0.6699 In 400 waves, 𝑛 = 400 × 0.6699 (d) = 𝟕. 𝟑𝟐𝟖 = 𝟐𝟔𝟖. 𝟎
  • 11. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 12. Regular vs Irregular Waves Regular wave: - single frequency Irregular wave: - many frequencies Wave energy depends on 𝜂2
  • 13. Energy Spectrum ● “Spectral” means “by frequency” ● A spectrum is usually determined by a Fourier transform ● This splits a signal up into its component frequencies ● Energy in a wave is proportional to 𝜂2, where 𝜂 is surface displacement ● The energy spectrum, or power spectrum, is the Fourier transform of 𝜂2
  • 14. Energy Spectrum For regular waves (single frequency): 𝐸 = 1 2 𝜌𝑔𝐴2 = 𝜌𝑔 ) 𝜂2(𝑡 = 1 8 𝜌𝑔𝐻2 For irregular waves (many frequencies): 𝑆 𝑓 d𝑓 න 𝑓1 𝑓2 𝑆 𝑓 d𝑓 is the “energy” in a small interval d𝑓 near frequency 𝑓 is the “energy” between frequencies 𝑓1 and 𝑓2 (strictly: energy/𝜌𝑔) The energy spectrum 𝑆(𝑓) is determined by Fourier transforming 𝜂2 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
  • 15. Model Spectra Open ocean: Bretschneider spectrum Fetch-limited seas: JONSWAP spectrum Key parameters: peak frequency 𝑓𝑝 ( =1/(peak period, 𝑇𝑝) ) significant wave height 𝐻𝑚0
  • 16. Model Spectra Bretschneider spectrum: JONSWAP spectrum: 𝑆 𝑓 = 5 16 𝐻𝑚0 2 𝑓𝑝 4 𝑓5 exp − 5 4 𝑓𝑝 4 𝑓4 𝑆 𝑓 = 𝐶 𝐻𝑚0 2 𝑓𝑝 4 𝑓5 exp − 5 4 𝑓𝑝 4 𝑓4 𝛾𝑏 𝜎 = ൝ 0.07 𝑓 < 𝑓𝑝 0.09 𝑓 > 𝑓𝑝 𝑏 = exp − 1 2 Τ 𝑓 𝑓𝑝 − 1 𝜎 2 𝛾 = 3.3
  • 17. Significant Wave Height, 𝑯𝒎𝟎 Bretschneider spectrum: 𝑆 𝑓 = 5 16 𝐻𝑚0 2 𝑓𝑝 4 𝑓5 exp − 5 4 𝑓𝑝 4 𝑓4 Total energy: 𝐸 𝜌𝑔 ≡ න 0 ∞ 𝑆 𝑓 d𝑓 = 1 16 𝐻𝑚0 2 𝐻𝑚0 = 4 Τ 𝐸 𝜌 𝑔 = 4 ) η2(𝑡 Total energy for a regular wave: 𝐸 𝜌𝑔 = 1 8 𝐻rms 2 Same energy if 𝐻𝑚0 = 2𝐻𝑟𝑚𝑠 = 1.414𝐻rms Rayleigh distribution: 𝐻 Τ 1 3 = 1.416𝐻rms 𝑯𝒎𝟎 and 𝑯 Τ 𝟏 𝟑 can be used synonymously for 𝑯𝒔 ... … but 𝐻𝑚0 is easier to measure!
  • 18. Finding Wave Parameters From a Spectrum ● Surface displacement 𝜂(𝑡) is measured (e.g. wave buoy) ● 𝜂2(𝑡) is Fourier-transformed to get energy spectrum 𝑆(𝑓) ● Height and period parameters are deduced from the peak and the moments of the spectrum: 𝑚𝑛 = න 0 ∞ 𝑓𝑛 𝑆 𝑓 d𝑓 Peak period: 𝑇𝑝 = 1 𝑓𝑝 Significant wave height: 𝐻𝑠 = 𝐻𝑚0 = 4 𝑚0 Energy period: 𝑇𝑒 = 𝑚−1 𝑚0
  • 19. Multi-Modal Spectra frequency f (Hz) spectral density S (m^2 s) swell wind
  • 20. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 21. Using a Spectrum To Generate a Wave Field η 𝑡 = ෍ ) 𝑎𝑖 cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 − 𝜙𝑖 amplitude 𝑆 𝑓𝑖 Δ𝑓 = 𝐸𝑖 = 1 2 𝑎𝑖 2 𝑎𝑖 = 2𝑆 𝑓𝑖 Δ𝑓 (angular) frequency 𝜔𝑖 = 2π𝑓𝑖 wavenumber 𝜔𝑖 2 = 𝑔𝑘𝑖 tanh 𝑘𝑖ℎ random phase
  • 22. Simulated Wave Field 𝑇𝑝 = 8 s 𝐻𝑠 = 1.0 m ℎ = 30 m Regular waves: Irregular waves: Focused waves:
  • 23. Example An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and significant wave height of 1.5 m. (a) Provide a sketch of a Bretschneider spectrum, labelling both axes with variables and units and indicating the frequencies corresponding to both the peak period and the energy period. Note: Calculations are not needed for this part. (b) Determine the power density (in kW m–1) of a regular wave component with frequency 0.125 Hz that represents the frequency range 0.12 to 0.13 Hz of the irregular wave field.
  • 24. An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and significant wave height of 1.5 m. (a) Provide a sketch of a Bretschneider spectrum, labelling both axes with variables and units and indicating the frequencies corresponding to both the peak period and the energy period. frequency f (Hz) spectral density S (m^2 s) fp fe
  • 25. An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and significant wave height of 1.5 m. (b) Determine the power density (in kW m–1) of a regular wave component with frequency 0.125 Hz that represents the frequency range 0.12 to 0.13 Hz of the irregular wave field. 𝑓 = 0.125 Hz Δ𝑓 = 0.01 Hz 𝑇𝑝 = 8.7 s 𝐻𝑠 = 1.5 m 𝑓𝑝 = 1 𝑇𝑝 𝑆 𝑓 = 1.645 m2 s 𝐸 = 𝜌𝑔 × 𝑆 𝑓 Δ𝑓 𝑃 = 𝐸𝑐𝑔 = 𝐸(𝑛𝑐) Deep water: 𝑛 = 1 2 𝑐 = 𝑔𝑇 2π 𝑇 = 1 𝑓 = 8 s 𝑷 = 𝟏. 𝟎𝟑𝟑 𝐤𝐖 𝐦−𝟏 = 0.1149 Hz = 165.4 J m−2 = 12.49 m s−1 𝑆 𝑓 = 5 16 𝐻𝑠 2 𝑓𝑝 4 𝑓5 ex p( − 5 4 𝑓𝑝 4 𝑓4 )
  • 26. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 27. Terminology A wave climate or sea state is a model wave spectrum, usually defined by a representative height and period, for use in: ● forecasting (from a weather forecast in advance) ● nowcasting (from ongoing weather) ● hindcasting (reconstruction from previous event)
  • 28. Prediction of Sea State Require: significant wave height, 𝐻𝑠 significant wave period, 𝑇𝑠 (or peak period, 𝑇𝑝) Depend on: wind speed, 𝑈 fetch, 𝐹 duration, 𝑡 gravity, 𝑔 Dimensional analysis: Empirical functions: JONSWAP or SMB curves ൰ 𝑔𝐻𝑠 𝑈2 = function( 𝑔𝐹 𝑈2 , 𝑔𝑡 𝑈 ቇ 𝑔𝑇𝑝 𝑈 = function( 𝑔𝐹 𝑈2 , 𝑔𝑡 𝑈
  • 29. Fetch-Limited vs Duration-Limited distance travelled by wave energy greater than fetch F F distance travelled by wave energy less than fetch F F Feff FETCH-LIMITED DURATION-LIMITED
  • 30. JONSWAP Curves For fetch-limited waves: 𝑔𝐻𝑠 𝑈2 = 0.0016 𝑔𝐹 𝑈2 Τ 1 2 (up to maximum 0.2433) 𝑔𝑇𝑝 𝑈 = 0.286 𝑔𝐹 𝑈2 Τ 1 3 (up to maximum 8.134) Waves are fetch-limited provided the storm has blown for a minimum time 𝑡𝑚𝑖𝑛 given by 𝑔𝑡 𝑈 min = 68.8 𝑔𝐹 𝑈2 Τ 2 3 up to maximum 7.15 × 104 Otherwise the waves are duration-limited, and the fetch used to determine height and period is an effective fetch determined by inversion using the actual storm duration 𝑡: 𝑔𝐹 𝑈2 eff = 1 68.8 𝑔𝑡 𝑈 Τ 3 2
  • 31. JONSWAP Curves (reprise) ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹 Τ 1 2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹 Τ 1 3 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 , Ƹ 𝑡 ≡ 𝑔𝑡 𝑈 , ෡ 𝐻𝑠 ≡ 𝑔𝐻𝑠 𝑈2 , ෠ 𝑇𝑝 ≡ 𝑔𝑇𝑝 𝑈
  • 32. JONSWAP and SMB Curves Solid lines: JONSWAP Dashed lines: SMB
  • 33. Example (a) Wind has blown at a consistent 𝑈 = 20 m s−1 over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs . Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves. (b) If the wind blows steadily for another 4 hours what are 𝐻𝑠 and 𝑇𝑝?
  • 34. (a) Wind has blown at a consistent 𝑈 = 20 m s−1 over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs. Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves. 𝑈 = 20 m s−1 𝐹 = 105 m 𝑡 = 6 × 3600 = 21600 s ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 Ƹ 𝑡 = 𝑔𝑡 𝑈 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 = 12510 ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹1/2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹1/3 ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 Ƹ 𝑡 ≡ 𝑔𝑡 𝑈 ෡ 𝐻𝑠 ≡ 𝑔𝐻𝑠 𝑈2 Duration-limited ෠ 𝐹eff = Ƹ 𝑡 68.8 Τ 3 2 ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹eff Τ 1 2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹eff Τ 1 3 𝐻𝑠 = ෡ 𝐻𝑠 × 𝑈2 𝑔 𝑇𝑝 = ෠ 𝑇𝑝 × 𝑈 𝑔 = 1910 = 0.06993 = 3.548 = 𝟐. 𝟖𝟓𝟏 𝐦 = 𝟕. 𝟐𝟑𝟑 𝐬 = 2453 = 10590
  • 35. (b) If the wind blows steadily for another 4 hours what are 𝐻𝑠 and 𝑇𝑝? 𝑈 = 20 m s−1 𝐹 = 105 m 𝑡 = 10 × 3600 = 36000 s ෠ 𝐹 = 2453 Ƹ 𝑡 = 𝑔𝑡 𝑈 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 Ƹ 𝑡min = 12510 ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹1/2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹1/3 ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 Ƹ 𝑡 ≡ 𝑔𝑡 𝑈 ෡ 𝐻𝑠 ≡ 𝑔𝐻𝑠 𝑈2 Fetch-limited ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹1/2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹1/3 𝐻𝑠 = ෡ 𝐻𝑠 × 𝑈2 𝑔 𝑇𝑝 = ෠ 𝑇𝑝 × 𝑈 𝑔 = 0.07924 = 3.857 = 𝟑. 𝟐𝟑𝟏 𝐦 = 𝟕. 𝟖𝟔𝟑 𝐬 = 17660
  翻译: