ๅฐŠๆ•ฌ็š„ ๅพฎไฟกๆฑ‡็Ž‡๏ผš1ๅ†† โ‰ˆ 0.046239 ๅ…ƒ ๆ”ฏไป˜ๅฎๆฑ‡็Ž‡๏ผš1ๅ†† โ‰ˆ 0.04633ๅ…ƒ [้€€ๅ‡บ็™ปๅฝ•]
SlideShare a Scribd company logo
BEV3023
RC DESIGN
DESIGN OF FOUNDATIOS
Introduction
โ€ข Foundation โ€“ Part of structure which
transmits load from the structure to the
underlying soil or rock
โ€ข All soils compress noticeably when loaded
causing structure to settle
Introduction
โ€ข Requirements in the design of foundations:
(i) Total settlement of the structure to be
limited to a tolerably small amount
(ii) Differential settlement of various parts
of structure shall be eliminated
โ€ข Tolimit settlement, it is necessary to transmit the
structure load to a soil stratum of sufficient
strength
โ€ข Spread the structure load over a sufficiently large
area of stratum to minimize bearing pressure
โ€ข Satisfactory soil: Use footings
โ€ข Adequate soil: Use deep foundations i.e. piles
โ€ข Pressure distribution under a footing
Uniform
distributed
Cohesivesoil Cohesionlesssoil
Pad Footings
โ€ข Transmit load from piers and
columns
โ€ข Simplest and cheapest type
โ€ข Use when soil is relatively strong or
when column loads are relatively
light
โ€ข Normally square or rectangular
shape in plan
โ€ข Has uniform thickness
Combine Footings
โ€ข Use when two columns are closed
together
โ€ข Combine the footing to form a
continuous base
โ€ข Base to be arranged so that its
centreline coincides with the centre
of gravity of the load โ€“ provide
uniform pressure on the soil
Strap Footings
โ€ข Use where the base for an exterior
column must not project beyond
the property line
โ€ข Strap beam is constructed between
exterior footing & adjacent interior
footing
โ€ข Purpose of strap โ€“ to restrain
overturning forces due to load
eccentricity on the exterior footing
Strap Footings (continued)
โ€ข Base area of the footings are
proportioned to the bearing
pressure
โ€ข Resultant of the loads on the two
footings should pass through the
centroid of the area of the two
bases
โ€ข Strap beam between the two
footings should NOT bear against
the soil
Strip Footings
โ€ข Use for foundations to load-bearing
wall
โ€ข Also use when pad footings for
number of columns are closely
spaced
โ€ข Also use on weak ground to
increase foundation bearing area
Raft Foundations
โ€ข Combine footing which covers the
whole building
โ€ข Support all walls & columns
โ€ข Useful where column loads are
heavy or bearing capacity is low โ€“
need large base
โ€ข Also used where soil mass contains
compressible layers or soil is
variable โ€“ differential settlement
difficult to control
Pile Foundations
โ€ข More economic to be used when
solid bearing stratum i.e. rock is
deeper than about 3 m
โ€ข Pile loads can either be transmitted
to a stiff bearing layer (some
distance below surface) or by
friction along the length of pile
โ€ข Pile types โ€“ precast (driven into the
soil) or cast in-situ (bored)
โ€ข Soil survey is important to provide
guide on the length of pile and safe
load capacity of the pile
Pile Foundations
Load from
Structure
P
I
L
E
P
I
L
E
P
I
L
E
P
I
L
E
Lower Density
Medium Density
High Density
Pile Cap
Thickness and Size of Footing
Area of pad:
๐‘จ =
๐‘ฎ๐’Œ + ๐‘ธ๐’Œ +๐‘พ
๐‘บ๐’๐’Š๐’ ๐’ƒ๐’†๐’‚๐’“๐’Š๐’๐’ˆ ๐’„๐’‚๐’‘๐’„๐’Š๐’•๐’š
Minimum effective depth of pad:
๐’… =
๐‘ต๐‘ฌ๐’…
๐’—๐’“๐’…,๐’Ž๐’‚๐’™ โˆ™ ๐’–๐’
NEd = Ultimate vertical load = 1.35 Gk +1.5 Qk
1 โˆ’ ๐‘“๐‘๐‘˜
250
๐‘“๐‘๐‘˜
1.5
vrd,max = 0.5vfcd = 0.5 0.6
uo = Columnperimeter
Design for Flexure
โ€ข Critical section for bending โ€“ At the face of the column
โ€ข Moment is taken on a section passing completely across the
footing and due to ultimate load on one side of the section
โ€ข Moment & shear is assessed using STR (Structure) combination
STR Combination 1:
๐‘ต = ๐Ÿ. ๐Ÿ‘๐Ÿ“๐‘ฎ๐’Œ + ๐Ÿ.๐Ÿ“๐‘ธ๐’Œ
x
x
y
y
Check for Shear
โ€ข May fail in shear as vertical shear or punching shear
Vertical shear
sections
Punching shear
perimeters
2d
d
d
h
Bends may be
required
Design of Pad Footing
Check for Shear
(i) Vertical Shear
โ€ข Critical section at distance d from the face of column
โ€ข Vertical shear force = ๏“ Load acting outside the section
โ€ข If VEd ๏€ผ VRd,c = No shear reinforcement isrequired
Check for Shear
(ii) Punching Shear
Axial Force Only
๐‘ฌ๐’… = ๐‘ฝ๐‘ฌ๐’…
๐’–โˆ™๐’…
where u = Critical perimeter
โ€ข Critical section at a perimeter 2d from the face of the column
โ€ข Punching shear force = ๏“ Load outside the critical perimeter
โ€ข Shear stress, ๐’—
โ€ข If vEd ๏€ผ vRd,c = No shear reinforcement is required
โ€ข Also ensure that VEd ๏€ผ VRd,max
Check for Shear
(ii) Punching Shear (continued)
Axial Force & Bending Moment
โ€ข Punching shear resistance can be significantly reduced of a co-
existing bending, MEd
โ€ข However, adverse effect of the moment will give rise to a non-
uniform shear distribution around the control perimeter
โ€ข Refer to Cl. 6.4.3(3) of EC2
Check for Shear
(ii) Punching Shear (continued)
Shear stress, ๐’—๐‘ฌ๐’… = ๐œท๐‘ฝ๐‘ฌ๐’…
๐’–๐Ÿโˆ™๐’…
where;
๏ข = factor used to include effect of eccentric load & bending moment =
1 + ๐‘˜
๐‘€๐ธ๐‘‘
๐‘‰๐ธ๐‘‘
๐‘ข1
๐‘Š1
k = coefficient depending on the ratio between column dimension c1 & c2
u1 = length of basic control perimeter
W1 = function of basic control perimeter corresponds to the distribution of
shear = 0.5๐‘1
2 + ๐‘1๐‘2 + 4๐‘2๐‘‘ + 16๐‘‘2 + 2๐œ‹๐‘‘๐‘1
c1/c2 ๏‚ฃ 0.5 1.0 2.0 ๏‚ณ 3.0
k 0.45 0.60 0.70 0.80
Design of Pad Footing
Check for Shear
(ii) Punching Shear (continued)
Cracking & Detailing Requirements
โ€ข All reinforcements should extend the full length of the footing
โ€ข If ๐ฟ๐‘ฅ > 1.5 ๐‘๐‘ฅ + 3๐‘‘ , at least two-thirds of the reinforcement parallel
to Ly should be concentrated in a band width ๐‘๐‘ฅ + 3๐‘‘ centred at
column where Lx & Ly and cx & cy are the footing and column dimension
in x and y directions
โ€ข Reinforcements should be anchored each side of all critical sections for
bending. Usually possible to achieve using straight bar
โ€ข Spacing between centre of reinforcements ๏€ผ 20 mm for fyk = 500
N/mm2
โ€ข Reinforcements normally not provided in the side face nor in the top
face (except for balanced & combined foundation)
โ€ข Starter bar should terminate in a 90๏‚ฐ bend tied to the bottom
reinforcement, or in the case of unreinforced footing spaced 75 mm
off the building
Example 1
PAD FOOTING
(AXIAL LOAD ONLY)
โ€ข fck = 25 N/mm2
โ€ข fyk = 500 N/mm2
โ€ข ๏งsoil = 150 N/mm2
โ€ข Unit weight of concrete = 25 kN/m3
โ€ข Design life = 50 years
โ€ข Exposure Class = XC2
โ€ข Assumed ๏ฆbar = 12 mm
Axial Force,N:
Gk = 600 kN
Qk = 400kN
B
h
Column size:
300 ๏‚ด 300 mm
H
Durability & Bond Requirements
Min cover regards to bond, cmin,b = 12 mm
Min cover regards to durability, cmin,dur = 25 mm
Allowance in design for deviation, ๏„cdev = 10mm
Nominal cover, cnom = cmin + ๏„cdev = 25 + 10 = 35mm
๏œ cnom = 35mm
cmin = 25mm
Size
Service load, N
Assumed selfweight 10% of service load , W
= 1000 kN
= 100 kN
๐›พ๐‘ ๐‘œ๐‘–๐‘™
๐‘+๐‘Š 1000+100
150
Area of footing required = = = 7.33 ๐‘š2
๏œ Try footing size, B ๏‚ด H ๏‚ด h = 3 m ๏‚ด 3 m ๏‚ด 0.45 m
Area, A = 9m2
Selfweight, W = 9 ๏‚ด0.45 ๏‚ด 25 = 101 kN
๐‘ต+๐‘พ
๐‘จ
=
๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ+๐Ÿ๐ŸŽ๐Ÿ
๐Ÿ—
Check Service Soil Bearing Capacity =
= 122 kN/m2 ๏‚ฃ 150 kN/m2 ๏ƒจ OK
Analysis
Ultimate axial force, NEd = 1.35Gk + 1.5Qk
= 1.35 (600) + 1.5 (400) = 1410 kN
๐ด 9
๐‘๐ธ๐‘‘ 1410
Soil pressure at ultimate load, P = = = 157 kN/m2
Soil pressure per m length, w = 157 ๏‚ด 3 m = 470 kN/m
1.35 m
1.35 m
w = 470 kN/m
MEd
0.3 m
๐Ÿ.๐Ÿ‘๐Ÿ“
๐Ÿ
๐‘ด๐‘ฌ๐’… = ๐Ÿ’๐Ÿ•๐ŸŽ ร— ๐Ÿ. ๐Ÿ‘๐Ÿ“ ร—
= 428 kNm
Main Reinforcement
Effective depth, d = h โ€“ c โ€“ 1.5๏ฆbar = 450 โ€“ 35 โ€“ (1.5 ๏‚ด 12) = 397mm
๐พ =
๐‘€๐ธ๐‘‘ 428ร—106
๐‘“๐‘๐‘˜๐‘๐‘‘2 25ร—3000ร—3972 bal
= = 0.036 ๏€ผ K = 0.167
๏œ Compression reinforcement is NOT required
๐‘ง = ๐‘‘ 0.25 โˆ’
๐พ
1.134
= 0.97๐‘‘ ๏€พ 0.95d
๐ด๐‘ ,๐‘Ÿ๐‘’
๐‘ž
=
๐‘€๐ธ๐‘‘
0.87๐‘“๐‘ฆ๐‘˜๐‘ง
=
428ร—106
0.87ร—500ร—0.95ร—397
= ๐Ÿ๐Ÿ”๐Ÿ๐Ÿ mm2
Minimum & Maximum Area of Reinforcement
๐ด๐‘ ,๐‘š๐‘–
๐‘›
= 0.26
๐‘“๐‘๐‘ก๐‘š
๐‘“๐‘ฆ๐‘˜
2.56
500
๐‘๐‘‘ = 0.26 0.0013๐‘๐‘‘ โ‰ฅ0.0013๐‘๐‘‘
๏œ As,min = 0.0013bd = 0.0013 ๏‚ด 3000 ๏‚ด 397 = 1589mm2
As,max = 0.04Ac = 0.04bh = 0.04 ๏‚ด 3000 ๏‚ด 450 = 54000mm2
Provide 24H12 (As,prov = 2715mm2)
(i) Vertical Shear
Critical shear at 1.0d from face of column:
๏œ Design shear force, VEd = 470 ๏‚ด 0.953 = 448kN
3 m
0.953 m
3 m
953 mm
1.35 m
w = 470 kN/m
d
=
397
mm
VEd
(i) Vertical Shear
๐‘˜ = 1+
200
= 1+
๐‘‘ 397
200
= 1.71 ๏€ผ 2.0
Note:
Bar extend beyond critical section at = 953 โ€“ 35 = 918 mm
๏€พ ๐‘™๐‘๐‘‘ + ๐‘‘ = 40โˆ… + ๐‘‘ = 40 ร— 12 + 397 = 877 mm ๏œ Asl = 2715mm2
๐‘™
๐œŒ =
๐‘ 
๐‘™
๐‘๐‘‘
๐ด 2715
3000 ร— 397
= = 0.0023 โ‰ค 0.02
(i) Vertical Shear
๐‘‰๐‘…๐‘‘,๐‘ = 0.12๐‘˜ 100๐œŒ๐‘™๐‘“๐‘๐‘˜
1/3 ๐‘๐‘‘
= 0.12 ร— 1.71 100 ร— 0.0023 ร— 25 1/3 3000 ร— 397 = 436463 N = 436 kN
๐‘‰๐‘š๐‘–๐‘› = ๐‘“๐‘๐‘˜
0.035๐‘˜3/2 ๐‘๐‘‘
= 0.035 ร— 1.713/2 25 3000 ร— 397 = 465970 ๐‘ = 466 kN
VEd (448 kN) ๏€ผ Vmin (466 kN) ๏ƒจ OK
(ii) Punching Shear
Critical shear at 2.0d from face of column:
Average d = 450 โ€“ 35 โ€“ 12 = 403 mm
๏œ 2d = 806 mm
Control perimeter, u = (4 ๏‚ด 300) + (2๏ฐ ๏‚ด 806) =
6265 mm
Area within perimeter, A = (0.30 ๏‚ด 0.30) + (4 ๏‚ด
0.30 ๏‚ด 0.806) + (๏ฐ ๏‚ด 0.8062) = 3.10m2
1350
2d = 806
300
300 2d = 806
544
๏€ผ ๐‘™๐‘๐‘‘ + ๐‘‘ = 40โˆ… + ๐‘‘ = 40 ร— 12 + 397 = 877
mm
๏œ Reinforcement NOT contributed to punching
resistance
(ii) Punching Shear
Punching shear force:
VEd = 157 (32 โ€“ 3.10) = 925kN
Punching shear resistance:
๐‘‰๐‘…๐‘‘,๐‘ = ๐‘‰๐‘š๐‘–๐‘› = 0.035๐‘˜3/2๐‘“๐‘๐‘˜
1/2
๐‘ข๐‘‘
25 1/2
= 0.035 1.71 3/2 6265 ร— 403
= 983199 N = 983 kN ๏€พ VEd (925 kN) ๏ƒจ OK
Soil pressure = 157 kN/m2
Aperimeter = 3.10 m2
Aall = 9m2
(iii) Maximum Punching Shear at Column Perimeter
Maximum punching shear force:
VEd,max = 157 (32 โ€“ 0.09) = 1400kN
Maximum shear resistance:
๐‘‰๐‘…๐‘‘,๐‘š๐‘Ž๐‘ฅ = 0.5๐‘ข๐‘‘ 0.6
๐‘“๐‘๐‘˜
1 โˆ’
๐‘“๐‘๐‘˜
250 1.5
= 0.5 4 ร— 300 ร— 403 0.6
25
25
1 โˆ’
250 1.5
= 2176 kN ๏€พ VEd,max ๏ƒจ OK
Soil pressure = 157 kN/m2
Acolumn = 0.09m2
Aall = 9m2
Cracking
h = 450 mm ๏€พ 200 mm
๐‘ 
Steel stress, ๐‘“ =
๐บ๐‘˜+0.3๐‘„๐‘˜ ๐ด๐‘ .๐‘Ÿ๐‘’๐‘ž
๐ด๐‘ ,๐‘๐‘Ÿ๐‘œ๐‘ฃ
๐‘“๐‘ฆ๐‘˜
1.15
=
600+0.3ร—400
1.35๐บ๐‘˜+1.5๐‘„๐‘˜
2611 500
1.35ร—600+1.5ร—400 2715 1.15
= 213 N/mm2
For design crack width 0.3 mm:
Maximum allowable bar spacing = 200 mm
Actual bar spacing =
3000โˆ’2 35 โˆ’12
23
= 127 mm ๏€ผ 200 mm
Cracking OK
Max bar spacing
Detailing
3000
3000
24H12
24H12
3000
450
24H12
Plan View Section View
Example 2
PAD FOOTING
(AXIAL LOAD & MOMENT)
โ€ข Design Life = 50 years (Table 2.1: EN
1990)
โ€ข Exposure Class = XC3
โ€ข fck = 30 N/mm2
โ€ข fyk = 500 N/mm2
โ€ข ๏งsoil = 150 N/mm2
โ€ข Unit weight of concrete = 25 kN/m3
โ€ข Assumed ๏ฆbar = 12 mm
Axial Force, N = 1500 kN
Moment = 50 kNm
B
h
Column size:
250 ๏‚ด 350 mm
H
Durability & Bond Requirements
Min cover regards to bond, cmin,b = 12 mm
Min cover regards to durability, cmin,dur = 25 mm
Allowance in design for deviation, ๏„cdev = 10mm
Nominal cover, cnom = cmin + ๏„cdev = 25 + 10 = 35mm
๏œ cnom = 35mm
cmin = 25mm
Size
Service axial, N
Service moment, M
Assumed selfweight 10% of service load , W
= 1500 kN / 1.40 = 1071 kN
= 50 kNm / 1.40 = 36.1 kNm
= 100 kN
๐›พ๐‘ ๐‘œ๐‘–๐‘™
๐‘+๐‘Š 1071+107.1
150
Area of footing required = = = 7.85 ๐‘š2
๏œ Try footing size, B ๏‚ด H ๏‚ด h = 2.80 m ๏‚ด 3.50 m ๏‚ด 0.65 m
Area, A = 9.80m2
Selfweight, W = 9.80 ๏‚ด0.65 ๏‚ด 25 = 159 kN
Size (Continued)
๐ผ๐‘ฅ
๐‘ฅ
3 3
= ๐ต๐ป
= 2.8ร—3.5
= 10.0 m4
12 12
๐‘+๐‘Š
๐ด
+
๐‘€๐‘ฆ
๐ผ
=
1071+159
9.80
+
50ร—1.75
10.0
๐‘ฆ = ๐ป
= 3.5
= 1.75m
2 2
Maximum soil pressure, ๐‘ƒ =
= 132 kN/m2 ๏‚ฃ 150 kN/m2 ๏ƒจ OK
B
H
x
x
Analysis
Ultimate soil pressure, ๐‘ƒ = ๐‘
ยฑ ๐‘€๐‘ฆ
= 1500
ยฑ
๐ด ๐ผ 9.80
10.0
50ร—1.75
= 153 ยฑ 8.7 kN/m2
๏œ Pmin = 144 kN/m2 and Pmax = 162 kN/m2
1.575 m
1.575 m
144
1.275
x
0.35 m
x
y y
162
154
144
162
Analysis (Continued)
๐‘€๐‘ฅ๐‘ฅ
= 154 ร—
1.5752
2
+ 162 โˆ’ 154
1.575
2
2
ร— 1.575 ร—
3
= 197 kNm/m ๏‚ด 2.80 m = 553kNm
2
2
๐‘€ = ๐Ÿ๐Ÿ“๐Ÿ‘ร— 1.275
= 124 kNm/m ๏‚ด 3.50 m=
๐‘ฆ๐‘ฆ
435 kNm 1.575 m
1.575 m
144
0.35 m
1.275
x
x
y y
162
154
144 + 162
=
2
Effective Depth
dx = h โ€“ c โ€“ 0.5๏ฆbar = 650 โ€“ 35 โ€“ (0.5 ๏‚ด 12) = 609 mm
dy = h โ€“ c โ€“ 1.5๏ฆbar = 650 โ€“ 35 โ€“ (1.5 ๏‚ด 12) = 597 mm
Main Reinforcement โ€“ Longitudinal Bar
๐พ =
๐‘€๐‘ฅ๐‘ฅ 553ร—106
๐‘“๐‘๐‘˜๐‘๐‘‘2 30ร—2800ร—6092 bal
= = 0.018 ๏€ผ K = 0.167
๏œ Compression reinforcement is NOT required
๐‘ง = ๐‘‘ 0.25 โˆ’
๐พ
1.134
= 0.98๐‘‘ ๏€พ 0.95d
๐ด๐‘ ,๐‘Ÿ๐‘’
๐‘ž
=
๐‘€๐‘ฅ๐‘ฅ
0.87๐‘“๐‘ฆ๐‘˜๐‘ง
=
553ร—106
0.87ร—500ร—0.95ร—609
= ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ• mm2
Minimum & Maximum Area of Reinforcement
๐ด๐‘ ,๐‘š๐‘–
๐‘›
= 0.26
๐‘“๐‘๐‘ก๐‘š
๐‘“๐‘ฆ๐‘˜
2.90
500
๐‘๐‘‘ = 0.26 0.0013๐‘๐‘‘ โ‰ฅ0.0013๐‘๐‘‘
๏œ As,min = 0.0013bd = 0.0013 ๏‚ด 2800 ๏‚ด 609 = 2217mm2
As,max = 0.04Ac = 0.04bh = 0.04 ๏‚ด 2800 ๏‚ด 609 = 72800mm2
Since As ๏€ผ As,min, Use As,min = 2217 mm2
Provide 21H12 (As = 2375mm2)
Main Reinforcement โ€“ Transverse Bar
๐พ =
๐‘€๐‘ฆ๐‘ฆ 435ร—106
๐‘“๐‘๐‘˜๐‘๐‘‘2 30ร—3500ร—5972 bal
= = 0.018 ๏€ผ K = 0.167
๏œ Compression reinforcement is NOT required
๐‘ง = ๐‘‘ 0.25 โˆ’
๐พ
1.134
= 0.99๐‘‘ ๏€พ 0.95d
๐ด๐‘ ,๐‘Ÿ๐‘’
๐‘ž
=
๐‘€๐‘ฆ๐‘ฆ
0.87๐‘“๐‘ฆ๐‘˜๐‘ง
=
435ร—106
0.87ร—500ร—0.95ร—597
= ๐Ÿ๐Ÿ•๐Ÿ”๐Ÿ“mm2
Minimum & Maximum Area of Reinforcement
๐ด๐‘ ,๐‘š๐‘–
๐‘›
= 0.26
๐‘“๐‘๐‘ก๐‘š
๐‘“๐‘ฆ๐‘˜
2.90
500
๐‘๐‘‘ = 0.26 0.0013๐‘๐‘‘ โ‰ฅ0.0013๐‘๐‘‘
๏œ As,min = 0.0013bd = 0.0013 ๏‚ด 3500 ๏‚ด 597 = 3147mm2
As,max = 0.04Ac = 0.04bh = 0.04 ๏‚ด 3500 ๏‚ด 597 = 91000mm2
Since As ๏€ผ As,min, Use As,min = 3147 mm2
Provide 28H12 (As = 3167mm2)
(i) Vertical Shear
Critical shear at 1.0d from face of column:
Average pressure at critical section:
= 144 +
2.891
3.50
ร— 18 = 159 kN/m2
๏œ Design shear force, VEd = 159 ๏‚ด 0.966๏‚ด
2.80 = 431 kN
144
2.891
162
159
0.966
d
=
0.609
2.8
Note:
Bar extend beyond critical section at = 966 โ€“ 35 = 931 mm
๏€พ ๐‘™๐‘๐‘‘ + ๐‘‘ = 36โˆ… + ๐‘‘ = 36 ร— 12 + 609 = 1041 mm ๏œ Asl = 0mm2
(i) Vertical Shear
๐‘˜ = 1 +
๐‘‘
200
= 1 +
609
200
= 1.57 ๏€ผ 2.0
๐‘™
๐œŒ =
๐ด๐‘ 
๐‘™
๐‘๐‘‘
= 0
๏œ ๐‘‰๐‘…๐‘‘,๐‘ = 0.12๐‘˜ 100๐œŒ๐‘™๐‘“๐‘๐‘˜
1/3 ๐‘๐‘‘
= 0.12 ร— 1.57 100 ร— 0 ร— 30 1/3 2800 ร— 609 = 0 N = 0 kN
๏œ ๐‘‰๐‘š๐‘–๐‘› = 0.035๐‘˜3/2 ๐‘“๐‘๐‘˜ ๐‘๐‘‘
= 0.035 ร— 1.573/2 30 2800 ร— 609 = 644949 ๐‘ = 645 kN
VEd (430 kN) ๏€ผ Vmin (645 kN) ๏ƒจ OK
(ii) Punching Shear
Critical shear at 2.0d from face of column:
Average ๐‘‘ =
609+597
2
= 603 mm
๏œ 2d = 1206mm
Control perimeter;
u = 2(350 + 250) + (2๏ฐ ๏‚ด 1206) = 8779mm
Area within perimeter;
A = (0.35 ๏‚ด 0.25) + (2 ๏‚ด 0.35 ๏‚ด1.206)
+ (2 ๏‚ด 0.25 ๏‚ด 1.206) + (๏ฐ ๏‚ด1.2062) = 6.10 m2
3500
2d = 1206 350
250
2d = 1206
69
369
๏€ผ ๐‘™๐‘๐‘‘ + ๐‘‘ = 36โˆ… + ๐‘‘ = 36 ร— 12 + 609 = 1041 mm
๏œ Reinforcement NOT contributed to punching resistance
2800
(ii) Punching Shear
Average punching shear force at control perimeter:
VEd = 153 [(2.80 ๏‚ด 3.50) โ€“ 6.10] = 566kN
๐‘ฃ๐ธ๐‘‘
Punching shear stress:
๐›ฝ๐‘‰
= ๐ธ๐‘‘
๐‘ข๐‘‘
Where ๐›ฝ = 1 +๐‘˜
๐‘€๐ธ๐‘‘
๐‘‰๐ธ๐‘‘
๐‘ข1
๐‘Š1
๐‘2 250
k = 0.65 ๏ƒจ ๐‘1
= 350
= 1.4
W1 = 0.5๐‘1
2 + ๐‘1๐‘2 + 4๐‘2๐‘‘ + 16๐‘‘2 + 2๐œ‹๐‘‘๐‘1
= 0.5(3502) + 350 ร— 250 + 4 ร— 250 ร— 603
16 6032 + 2๐œ‹ ร— 603 ร— 350 = 7.9 ๏‚ด 106 mm2
๏œ ๐›ฝ = 1 +0.65
50ร—106 8779
566ร—103 7.9ร—106
= 1.06
Therefore,๐’—๐‘ฌ๐’… ๐Ÿ–๐Ÿ•๐Ÿ•๐Ÿ—ร—๐Ÿ”๐ŸŽ๐Ÿ—
๐Ÿ‘
= ๐Ÿ.๐ŸŽ๐Ÿ”ร—๐Ÿ“๐Ÿ”๐Ÿ”ร—๐Ÿ๐ŸŽ
= ๐ŸŽ. ๐Ÿ๐Ÿ N/mm2
+
Soil pressure = 153 kN/m2
Aall = 2.8 ๏‚ด 3.5m
Aperimeter =6.1 0 m2
(ii) Punching Shear
Punching shear resistance:
๐‘˜ = 1 +
๐‘‘
200
= 1 +
609
200
= 1.57 ๏€ผ 2.0
๐‘ฃ๐‘…๐‘‘,๐‘ = ๐‘ฃ๐‘š๐‘–๐‘› = 0.035๐‘˜3/2๐‘“๐‘๐‘˜
1/2
= 0.035 1.57 3/2 30 1/2
= 0.38 N/mm2 ๏€พ vEd (0.11N/mm2) ๏ƒจ OK
Soil pressure = 153 kN/m2
Aall = 2.8 ๏‚ด 3.5m
Aperimeter = 6.10m2
(iii) Maximum Punching Shear at Column Perimeter
Maximum punching shear force:
VEd,max = 1500kN
Column perimeter, uo = 2(350 + 250) = 1200mm
Punching shear stress:
๐ธ๐‘‘
๐›ฝ๐‘‰๐ธ๐‘‘
๐‘ฃ =
Where
๐‘€๐ธ๐‘‘
๐‘‰๐ธ๐‘‘
๐‘ข๐‘œ
๐‘Š1
๐‘ข๐‘œ๐‘‘
๐›ฝ = 1 +๐‘˜
k = 0.65 ๏ƒจ
๐‘2 250
๐‘1
= 350
= 1.4
W1 = 0.5๐‘1
2 +๐‘1๐‘2
= 0.5(3502) + 350 ร— 250 = 0.15 ๏‚ด 106mm2
Soil pressure = 153 kN/m2
all
A = 2.8 ๏‚ด 3.5 m = 9.8 m2
Acolumn = 0.09 m2
(iii) Maximum Punching Shear at Column Perimeter
๏œ ๐›ฝ = 1 +0.65
50ร—106 1200
1500ร—103 0.15ร—106
= 1.17
Therefore, ๐’—๐‘ฌ๐’… =
๐Ÿ.๐Ÿ๐Ÿ•ร—๐Ÿ๐Ÿ“๐ŸŽ๐ŸŽร—๐Ÿ๐ŸŽ๐Ÿ‘
๐Ÿ๐Ÿ๐ŸŽ๐ŸŽร—๐Ÿ”๐ŸŽ๐Ÿ‘
= ๐Ÿ. ๐Ÿ’๐Ÿ’ N/mm2
Maximum shear resistance:
๐‘ฃ๐‘…๐‘‘,๐‘š๐‘Ž๐‘ฅ = 0.5 0.6
๐‘“๐‘๐‘˜
1 โˆ’
๐‘“๐‘๐‘˜
250 1.5
30
30
= 0.5 0.6 1 โˆ’
250 1.5
= 5.28 N/mm2 ๏€พvEd ๏ƒจ OK
Soil pressure = 153 kN/m2
all
A = 2.8 ๏‚ด 3.5 m = 9.8 m2
Acolumn = 0.09m2
Cracking
h = 650 mm ๏€พ 200mm
= 0.6
1.15
๐‘“๐‘ฆ๐‘˜ ๐ด๐‘ ,๐‘Ÿ๐‘’๐‘ž
๐ด๐‘ ,๐‘๐‘Ÿ๐‘œ๐‘ฃ
500 2197
1.15 2375
= 0.6 = 241 N/mm2
For design crack width 0.3 mm:
Maximum allowable bar spacing = 150 mm
Actual bar spacing at x-x =
2800โˆ’2 35 โˆ’12
20
= 136 mm ๏€ผ 150 mm
ctual bar spacing at y-y =
3500โˆ’2 35 โˆ’12
27
= 126 mm ๏€ผ 150 mm
Cracking OK
Max bar spacing
Assume steel stress is under quasi-permanent loading:
Detailing
3500
2800
28H12
21H12 3500
650
28H12
Plan View Section View
21H12

More Related Content

Similar to Geotechnical Pad Foundation (11-1-2021).pptx

Footing design
Footing designFooting design
Footing design
Vikas Mehta
ย 
Design of isolated foundation types of isolated foundation
Design of  isolated foundation types of isolated foundationDesign of  isolated foundation types of isolated foundation
Design of isolated foundation types of isolated foundation
Shiva Sondarva
ย 
design-of-mat-sd.pdf
design-of-mat-sd.pdfdesign-of-mat-sd.pdf
design-of-mat-sd.pdf
ArjunanChandrasekara
ย 
0 ne way slab
0 ne way slab0 ne way slab
0 ne way slab
Golu Singh
ย 
Design ppt
Design pptDesign ppt
Design ppt
tishu001
ย 
Design of pile cap
Design of  pile capDesign of  pile cap
Design of pile cap
Puspendu Ray
ย 
slabs.ppt
slabs.pptslabs.ppt
slabs.ppt
MOHNIKASAMINENI
ย 
140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf
ephrem53
ย 
bridge final ppt.pptx
bridge final ppt.pptxbridge final ppt.pptx
bridge final ppt.pptx
RajeshKumar25548
ย 
INDUSTRIAL BUILDING GANTRY GIRDER
INDUSTRIAL BUILDING  GANTRY GIRDERINDUSTRIAL BUILDING  GANTRY GIRDER
INDUSTRIAL BUILDING GANTRY GIRDER
Harsh Shani
ย 
Design of RCC Lintel
Design of RCC LintelDesign of RCC Lintel
Design of RCC Lintel
Arun Kurali
ย 
Design of combined footings
Design of combined footingsDesign of combined footings
Design of combined footings
Victor Omotoriogun
ย 
Design of Structures Chapter2.pdf
Design of Structures Chapter2.pdfDesign of Structures Chapter2.pdf
Design of Structures Chapter2.pdf
UmarSaba1
ย 
final internship ppt.pptx
final internship ppt.pptxfinal internship ppt.pptx
final internship ppt.pptx
KiranKr32
ย 
onw way slab design
onw way slab designonw way slab design
onw way slab design
Palak Patel
ย 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Hossam Shafiq II
ย 
Civil structural engineering - Flat slab design
Civil structural engineering -  Flat slab designCivil structural engineering -  Flat slab design
Civil structural engineering - Flat slab design
Satish Narayan
ย 
Design of Structures Chapter2.pptx
Design of Structures Chapter2.pptxDesign of Structures Chapter2.pptx
Design of Structures Chapter2.pptx
UmarSaba1
ย 
Design of One-Way Slab
Design of One-Way SlabDesign of One-Way Slab
Design of One-Way Slab
Mohotasimur Anik
ย 
5. TPES AND DESIGN OF FOOTING in rcc.pptx
5. TPES AND DESIGN OF FOOTING in rcc.pptx5. TPES AND DESIGN OF FOOTING in rcc.pptx
5. TPES AND DESIGN OF FOOTING in rcc.pptx
venkateshreddytab
ย 

Similar to Geotechnical Pad Foundation (11-1-2021).pptx (20)

Footing design
Footing designFooting design
Footing design
ย 
Design of isolated foundation types of isolated foundation
Design of  isolated foundation types of isolated foundationDesign of  isolated foundation types of isolated foundation
Design of isolated foundation types of isolated foundation
ย 
design-of-mat-sd.pdf
design-of-mat-sd.pdfdesign-of-mat-sd.pdf
design-of-mat-sd.pdf
ย 
0 ne way slab
0 ne way slab0 ne way slab
0 ne way slab
ย 
Design ppt
Design pptDesign ppt
Design ppt
ย 
Design of pile cap
Design of  pile capDesign of  pile cap
Design of pile cap
ย 
slabs.ppt
slabs.pptslabs.ppt
slabs.ppt
ย 
140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf
ย 
bridge final ppt.pptx
bridge final ppt.pptxbridge final ppt.pptx
bridge final ppt.pptx
ย 
INDUSTRIAL BUILDING GANTRY GIRDER
INDUSTRIAL BUILDING  GANTRY GIRDERINDUSTRIAL BUILDING  GANTRY GIRDER
INDUSTRIAL BUILDING GANTRY GIRDER
ย 
Design of RCC Lintel
Design of RCC LintelDesign of RCC Lintel
Design of RCC Lintel
ย 
Design of combined footings
Design of combined footingsDesign of combined footings
Design of combined footings
ย 
Design of Structures Chapter2.pdf
Design of Structures Chapter2.pdfDesign of Structures Chapter2.pdf
Design of Structures Chapter2.pdf
ย 
final internship ppt.pptx
final internship ppt.pptxfinal internship ppt.pptx
final internship ppt.pptx
ย 
onw way slab design
onw way slab designonw way slab design
onw way slab design
ย 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
ย 
Civil structural engineering - Flat slab design
Civil structural engineering -  Flat slab designCivil structural engineering -  Flat slab design
Civil structural engineering - Flat slab design
ย 
Design of Structures Chapter2.pptx
Design of Structures Chapter2.pptxDesign of Structures Chapter2.pptx
Design of Structures Chapter2.pptx
ย 
Design of One-Way Slab
Design of One-Way SlabDesign of One-Way Slab
Design of One-Way Slab
ย 
5. TPES AND DESIGN OF FOOTING in rcc.pptx
5. TPES AND DESIGN OF FOOTING in rcc.pptx5. TPES AND DESIGN OF FOOTING in rcc.pptx
5. TPES AND DESIGN OF FOOTING in rcc.pptx
ย 

Recently uploaded

managing Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptxmanaging Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptx
nabaegha
ย 
A Free 200-Page eBook ~ Brain and Mind Exercise.pptx
A Free 200-Page eBook ~ Brain and Mind Exercise.pptxA Free 200-Page eBook ~ Brain and Mind Exercise.pptx
A Free 200-Page eBook ~ Brain and Mind Exercise.pptx
OH TEIK BIN
ย 
Dreamin in Color '24 - (Workshop) Design an API Specification with MuleSoft's...
Dreamin in Color '24 - (Workshop) Design an API Specification with MuleSoft's...Dreamin in Color '24 - (Workshop) Design an API Specification with MuleSoft's...
Dreamin in Color '24 - (Workshop) Design an API Specification with MuleSoft's...
Alexandra N. Martinez
ย 
nutrition in plants chapter 1 class 7...
nutrition in plants chapter 1 class 7...nutrition in plants chapter 1 class 7...
nutrition in plants chapter 1 class 7...
chaudharyreet2244
ย 
Opportunity scholarships and the schools that receive them
Opportunity scholarships and the schools that receive themOpportunity scholarships and the schools that receive them
Opportunity scholarships and the schools that receive them
EducationNC
ย 
Diversity Quiz Finals by Quiz Club, IIT Kanpur
Diversity Quiz Finals by Quiz Club, IIT KanpurDiversity Quiz Finals by Quiz Club, IIT Kanpur
Diversity Quiz Finals by Quiz Club, IIT Kanpur
Quiz Club IIT Kanpur
ย 
Contiguity Of Various Message Forms - Rupam Chandra.pptx
Contiguity Of Various Message Forms - Rupam Chandra.pptxContiguity Of Various Message Forms - Rupam Chandra.pptx
Contiguity Of Various Message Forms - Rupam Chandra.pptx
Kalna College
ย 
family welfare programme-pptx details welfare
family welfare programme-pptx details welfarefamily welfare programme-pptx details welfare
family welfare programme-pptx details welfare
AnushreeBhunia
ย 
How to stay relevant as a cyber professional: Skills, trends and career paths...
How to stay relevant as a cyber professional: Skills, trends and career paths...How to stay relevant as a cyber professional: Skills, trends and career paths...
How to stay relevant as a cyber professional: Skills, trends and career paths...
Infosec
ย 
Bแป˜ Bร€I TแบฌP TEST THEO UNIT - FORM 2025 - TIแบพNG ANH 12 GLOBAL SUCCESS - KรŒ 1 (B...
Bแป˜ Bร€I TแบฌP TEST THEO UNIT - FORM 2025 - TIแบพNG ANH 12 GLOBAL SUCCESS - KรŒ 1 (B...Bแป˜ Bร€I TแบฌP TEST THEO UNIT - FORM 2025 - TIแบพNG ANH 12 GLOBAL SUCCESS - KรŒ 1 (B...
Bแป˜ Bร€I TแบฌP TEST THEO UNIT - FORM 2025 - TIแบพNG ANH 12 GLOBAL SUCCESS - KรŒ 1 (B...
Nguyen Thanh Tu Collection
ย 
How to Create a Stage or a Pipeline in Odoo 17 CRM
How to Create a Stage or a Pipeline in Odoo 17 CRMHow to Create a Stage or a Pipeline in Odoo 17 CRM
How to Create a Stage or a Pipeline in Odoo 17 CRM
Celine George
ย 
Accounting for Restricted Grants When and How To Record Properly
Accounting for Restricted Grants  When and How To Record ProperlyAccounting for Restricted Grants  When and How To Record Properly
Accounting for Restricted Grants When and How To Record Properly
TechSoup
ย 
8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity
RuchiRathor2
ย 
CapTechTalks Webinar Slides June 2024 Donovan Wright.pptx
CapTechTalks Webinar Slides June 2024 Donovan Wright.pptxCapTechTalks Webinar Slides June 2024 Donovan Wright.pptx
CapTechTalks Webinar Slides June 2024 Donovan Wright.pptx
CapitolTechU
ย 
Simple-Present-Tense xxxxxxxxxxxxxxxxxxx
Simple-Present-Tense xxxxxxxxxxxxxxxxxxxSimple-Present-Tense xxxxxxxxxxxxxxxxxxx
Simple-Present-Tense xxxxxxxxxxxxxxxxxxx
RandolphRadicy
ย 
220711130097 Tulip Samanta Concept of Information and Communication Technology
220711130097 Tulip Samanta Concept of Information and Communication Technology220711130097 Tulip Samanta Concept of Information and Communication Technology
220711130097 Tulip Samanta Concept of Information and Communication Technology
Kalna College
ย 
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
indexPub
ย 
The Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teachingThe Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teaching
Derek Wenmoth
ย 
bryophytes.pptx bsc botany honours second semester
bryophytes.pptx bsc botany honours  second semesterbryophytes.pptx bsc botany honours  second semester
bryophytes.pptx bsc botany honours second semester
Sarojini38
ย 
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
220711130100 udita Chakraborty  Aims and objectives of national policy on inf...220711130100 udita Chakraborty  Aims and objectives of national policy on inf...
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
Kalna College
ย 

Recently uploaded (20)

managing Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptxmanaging Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptx
ย 
A Free 200-Page eBook ~ Brain and Mind Exercise.pptx
A Free 200-Page eBook ~ Brain and Mind Exercise.pptxA Free 200-Page eBook ~ Brain and Mind Exercise.pptx
A Free 200-Page eBook ~ Brain and Mind Exercise.pptx
ย 
Dreamin in Color '24 - (Workshop) Design an API Specification with MuleSoft's...
Dreamin in Color '24 - (Workshop) Design an API Specification with MuleSoft's...Dreamin in Color '24 - (Workshop) Design an API Specification with MuleSoft's...
Dreamin in Color '24 - (Workshop) Design an API Specification with MuleSoft's...
ย 
nutrition in plants chapter 1 class 7...
nutrition in plants chapter 1 class 7...nutrition in plants chapter 1 class 7...
nutrition in plants chapter 1 class 7...
ย 
Opportunity scholarships and the schools that receive them
Opportunity scholarships and the schools that receive themOpportunity scholarships and the schools that receive them
Opportunity scholarships and the schools that receive them
ย 
Diversity Quiz Finals by Quiz Club, IIT Kanpur
Diversity Quiz Finals by Quiz Club, IIT KanpurDiversity Quiz Finals by Quiz Club, IIT Kanpur
Diversity Quiz Finals by Quiz Club, IIT Kanpur
ย 
Contiguity Of Various Message Forms - Rupam Chandra.pptx
Contiguity Of Various Message Forms - Rupam Chandra.pptxContiguity Of Various Message Forms - Rupam Chandra.pptx
Contiguity Of Various Message Forms - Rupam Chandra.pptx
ย 
family welfare programme-pptx details welfare
family welfare programme-pptx details welfarefamily welfare programme-pptx details welfare
family welfare programme-pptx details welfare
ย 
How to stay relevant as a cyber professional: Skills, trends and career paths...
How to stay relevant as a cyber professional: Skills, trends and career paths...How to stay relevant as a cyber professional: Skills, trends and career paths...
How to stay relevant as a cyber professional: Skills, trends and career paths...
ย 
Bแป˜ Bร€I TแบฌP TEST THEO UNIT - FORM 2025 - TIแบพNG ANH 12 GLOBAL SUCCESS - KรŒ 1 (B...
Bแป˜ Bร€I TแบฌP TEST THEO UNIT - FORM 2025 - TIแบพNG ANH 12 GLOBAL SUCCESS - KรŒ 1 (B...Bแป˜ Bร€I TแบฌP TEST THEO UNIT - FORM 2025 - TIแบพNG ANH 12 GLOBAL SUCCESS - KรŒ 1 (B...
Bแป˜ Bร€I TแบฌP TEST THEO UNIT - FORM 2025 - TIแบพNG ANH 12 GLOBAL SUCCESS - KรŒ 1 (B...
ย 
How to Create a Stage or a Pipeline in Odoo 17 CRM
How to Create a Stage or a Pipeline in Odoo 17 CRMHow to Create a Stage or a Pipeline in Odoo 17 CRM
How to Create a Stage or a Pipeline in Odoo 17 CRM
ย 
Accounting for Restricted Grants When and How To Record Properly
Accounting for Restricted Grants  When and How To Record ProperlyAccounting for Restricted Grants  When and How To Record Properly
Accounting for Restricted Grants When and How To Record Properly
ย 
8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity
ย 
CapTechTalks Webinar Slides June 2024 Donovan Wright.pptx
CapTechTalks Webinar Slides June 2024 Donovan Wright.pptxCapTechTalks Webinar Slides June 2024 Donovan Wright.pptx
CapTechTalks Webinar Slides June 2024 Donovan Wright.pptx
ย 
Simple-Present-Tense xxxxxxxxxxxxxxxxxxx
Simple-Present-Tense xxxxxxxxxxxxxxxxxxxSimple-Present-Tense xxxxxxxxxxxxxxxxxxx
Simple-Present-Tense xxxxxxxxxxxxxxxxxxx
ย 
220711130097 Tulip Samanta Concept of Information and Communication Technology
220711130097 Tulip Samanta Concept of Information and Communication Technology220711130097 Tulip Samanta Concept of Information and Communication Technology
220711130097 Tulip Samanta Concept of Information and Communication Technology
ย 
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
ย 
The Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teachingThe Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teaching
ย 
bryophytes.pptx bsc botany honours second semester
bryophytes.pptx bsc botany honours  second semesterbryophytes.pptx bsc botany honours  second semester
bryophytes.pptx bsc botany honours second semester
ย 
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
220711130100 udita Chakraborty  Aims and objectives of national policy on inf...220711130100 udita Chakraborty  Aims and objectives of national policy on inf...
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
ย 

Geotechnical Pad Foundation (11-1-2021).pptx

  • 3. Introduction โ€ข Foundation โ€“ Part of structure which transmits load from the structure to the underlying soil or rock โ€ข All soils compress noticeably when loaded causing structure to settle
  • 4. Introduction โ€ข Requirements in the design of foundations: (i) Total settlement of the structure to be limited to a tolerably small amount (ii) Differential settlement of various parts of structure shall be eliminated
  • 5. โ€ข Tolimit settlement, it is necessary to transmit the structure load to a soil stratum of sufficient strength โ€ข Spread the structure load over a sufficiently large area of stratum to minimize bearing pressure โ€ข Satisfactory soil: Use footings โ€ข Adequate soil: Use deep foundations i.e. piles
  • 6. โ€ข Pressure distribution under a footing Uniform distributed Cohesivesoil Cohesionlesssoil
  • 7. Pad Footings โ€ข Transmit load from piers and columns โ€ข Simplest and cheapest type โ€ข Use when soil is relatively strong or when column loads are relatively light โ€ข Normally square or rectangular shape in plan โ€ข Has uniform thickness
  • 8. Combine Footings โ€ข Use when two columns are closed together โ€ข Combine the footing to form a continuous base โ€ข Base to be arranged so that its centreline coincides with the centre of gravity of the load โ€“ provide uniform pressure on the soil
  • 9. Strap Footings โ€ข Use where the base for an exterior column must not project beyond the property line โ€ข Strap beam is constructed between exterior footing & adjacent interior footing โ€ข Purpose of strap โ€“ to restrain overturning forces due to load eccentricity on the exterior footing
  • 10. Strap Footings (continued) โ€ข Base area of the footings are proportioned to the bearing pressure โ€ข Resultant of the loads on the two footings should pass through the centroid of the area of the two bases โ€ข Strap beam between the two footings should NOT bear against the soil
  • 11. Strip Footings โ€ข Use for foundations to load-bearing wall โ€ข Also use when pad footings for number of columns are closely spaced โ€ข Also use on weak ground to increase foundation bearing area
  • 12. Raft Foundations โ€ข Combine footing which covers the whole building โ€ข Support all walls & columns โ€ข Useful where column loads are heavy or bearing capacity is low โ€“ need large base โ€ข Also used where soil mass contains compressible layers or soil is variable โ€“ differential settlement difficult to control
  • 13. Pile Foundations โ€ข More economic to be used when solid bearing stratum i.e. rock is deeper than about 3 m โ€ข Pile loads can either be transmitted to a stiff bearing layer (some distance below surface) or by friction along the length of pile โ€ข Pile types โ€“ precast (driven into the soil) or cast in-situ (bored) โ€ข Soil survey is important to provide guide on the length of pile and safe load capacity of the pile
  • 15. Thickness and Size of Footing Area of pad: ๐‘จ = ๐‘ฎ๐’Œ + ๐‘ธ๐’Œ +๐‘พ ๐‘บ๐’๐’Š๐’ ๐’ƒ๐’†๐’‚๐’“๐’Š๐’๐’ˆ ๐’„๐’‚๐’‘๐’„๐’Š๐’•๐’š Minimum effective depth of pad: ๐’… = ๐‘ต๐‘ฌ๐’… ๐’—๐’“๐’…,๐’Ž๐’‚๐’™ โˆ™ ๐’–๐’ NEd = Ultimate vertical load = 1.35 Gk +1.5 Qk 1 โˆ’ ๐‘“๐‘๐‘˜ 250 ๐‘“๐‘๐‘˜ 1.5 vrd,max = 0.5vfcd = 0.5 0.6 uo = Columnperimeter
  • 16. Design for Flexure โ€ข Critical section for bending โ€“ At the face of the column โ€ข Moment is taken on a section passing completely across the footing and due to ultimate load on one side of the section โ€ข Moment & shear is assessed using STR (Structure) combination STR Combination 1: ๐‘ต = ๐Ÿ. ๐Ÿ‘๐Ÿ“๐‘ฎ๐’Œ + ๐Ÿ.๐Ÿ“๐‘ธ๐’Œ x x y y
  • 17. Check for Shear โ€ข May fail in shear as vertical shear or punching shear Vertical shear sections Punching shear perimeters 2d d d h Bends may be required
  • 18. Design of Pad Footing Check for Shear (i) Vertical Shear โ€ข Critical section at distance d from the face of column โ€ข Vertical shear force = ๏“ Load acting outside the section โ€ข If VEd ๏€ผ VRd,c = No shear reinforcement isrequired
  • 19. Check for Shear (ii) Punching Shear Axial Force Only ๐‘ฌ๐’… = ๐‘ฝ๐‘ฌ๐’… ๐’–โˆ™๐’… where u = Critical perimeter โ€ข Critical section at a perimeter 2d from the face of the column โ€ข Punching shear force = ๏“ Load outside the critical perimeter โ€ข Shear stress, ๐’— โ€ข If vEd ๏€ผ vRd,c = No shear reinforcement is required โ€ข Also ensure that VEd ๏€ผ VRd,max
  • 20. Check for Shear (ii) Punching Shear (continued) Axial Force & Bending Moment โ€ข Punching shear resistance can be significantly reduced of a co- existing bending, MEd โ€ข However, adverse effect of the moment will give rise to a non- uniform shear distribution around the control perimeter โ€ข Refer to Cl. 6.4.3(3) of EC2
  • 21. Check for Shear (ii) Punching Shear (continued) Shear stress, ๐’—๐‘ฌ๐’… = ๐œท๐‘ฝ๐‘ฌ๐’… ๐’–๐Ÿโˆ™๐’… where; ๏ข = factor used to include effect of eccentric load & bending moment = 1 + ๐‘˜ ๐‘€๐ธ๐‘‘ ๐‘‰๐ธ๐‘‘ ๐‘ข1 ๐‘Š1 k = coefficient depending on the ratio between column dimension c1 & c2 u1 = length of basic control perimeter W1 = function of basic control perimeter corresponds to the distribution of shear = 0.5๐‘1 2 + ๐‘1๐‘2 + 4๐‘2๐‘‘ + 16๐‘‘2 + 2๐œ‹๐‘‘๐‘1 c1/c2 ๏‚ฃ 0.5 1.0 2.0 ๏‚ณ 3.0 k 0.45 0.60 0.70 0.80
  • 22. Design of Pad Footing Check for Shear (ii) Punching Shear (continued)
  • 23. Cracking & Detailing Requirements โ€ข All reinforcements should extend the full length of the footing โ€ข If ๐ฟ๐‘ฅ > 1.5 ๐‘๐‘ฅ + 3๐‘‘ , at least two-thirds of the reinforcement parallel to Ly should be concentrated in a band width ๐‘๐‘ฅ + 3๐‘‘ centred at column where Lx & Ly and cx & cy are the footing and column dimension in x and y directions โ€ข Reinforcements should be anchored each side of all critical sections for bending. Usually possible to achieve using straight bar โ€ข Spacing between centre of reinforcements ๏€ผ 20 mm for fyk = 500 N/mm2 โ€ข Reinforcements normally not provided in the side face nor in the top face (except for balanced & combined foundation) โ€ข Starter bar should terminate in a 90๏‚ฐ bend tied to the bottom reinforcement, or in the case of unreinforced footing spaced 75 mm off the building
  • 25. โ€ข fck = 25 N/mm2 โ€ข fyk = 500 N/mm2 โ€ข ๏งsoil = 150 N/mm2 โ€ข Unit weight of concrete = 25 kN/m3 โ€ข Design life = 50 years โ€ข Exposure Class = XC2 โ€ข Assumed ๏ฆbar = 12 mm Axial Force,N: Gk = 600 kN Qk = 400kN B h Column size: 300 ๏‚ด 300 mm H
  • 26. Durability & Bond Requirements Min cover regards to bond, cmin,b = 12 mm Min cover regards to durability, cmin,dur = 25 mm Allowance in design for deviation, ๏„cdev = 10mm Nominal cover, cnom = cmin + ๏„cdev = 25 + 10 = 35mm ๏œ cnom = 35mm cmin = 25mm
  • 27. Size Service load, N Assumed selfweight 10% of service load , W = 1000 kN = 100 kN ๐›พ๐‘ ๐‘œ๐‘–๐‘™ ๐‘+๐‘Š 1000+100 150 Area of footing required = = = 7.33 ๐‘š2 ๏œ Try footing size, B ๏‚ด H ๏‚ด h = 3 m ๏‚ด 3 m ๏‚ด 0.45 m Area, A = 9m2 Selfweight, W = 9 ๏‚ด0.45 ๏‚ด 25 = 101 kN ๐‘ต+๐‘พ ๐‘จ = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ+๐Ÿ๐ŸŽ๐Ÿ ๐Ÿ— Check Service Soil Bearing Capacity = = 122 kN/m2 ๏‚ฃ 150 kN/m2 ๏ƒจ OK
  • 28. Analysis Ultimate axial force, NEd = 1.35Gk + 1.5Qk = 1.35 (600) + 1.5 (400) = 1410 kN ๐ด 9 ๐‘๐ธ๐‘‘ 1410 Soil pressure at ultimate load, P = = = 157 kN/m2 Soil pressure per m length, w = 157 ๏‚ด 3 m = 470 kN/m 1.35 m 1.35 m w = 470 kN/m MEd 0.3 m ๐Ÿ.๐Ÿ‘๐Ÿ“ ๐Ÿ ๐‘ด๐‘ฌ๐’… = ๐Ÿ’๐Ÿ•๐ŸŽ ร— ๐Ÿ. ๐Ÿ‘๐Ÿ“ ร— = 428 kNm
  • 29. Main Reinforcement Effective depth, d = h โ€“ c โ€“ 1.5๏ฆbar = 450 โ€“ 35 โ€“ (1.5 ๏‚ด 12) = 397mm ๐พ = ๐‘€๐ธ๐‘‘ 428ร—106 ๐‘“๐‘๐‘˜๐‘๐‘‘2 25ร—3000ร—3972 bal = = 0.036 ๏€ผ K = 0.167 ๏œ Compression reinforcement is NOT required ๐‘ง = ๐‘‘ 0.25 โˆ’ ๐พ 1.134 = 0.97๐‘‘ ๏€พ 0.95d ๐ด๐‘ ,๐‘Ÿ๐‘’ ๐‘ž = ๐‘€๐ธ๐‘‘ 0.87๐‘“๐‘ฆ๐‘˜๐‘ง = 428ร—106 0.87ร—500ร—0.95ร—397 = ๐Ÿ๐Ÿ”๐Ÿ๐Ÿ mm2
  • 30. Minimum & Maximum Area of Reinforcement ๐ด๐‘ ,๐‘š๐‘– ๐‘› = 0.26 ๐‘“๐‘๐‘ก๐‘š ๐‘“๐‘ฆ๐‘˜ 2.56 500 ๐‘๐‘‘ = 0.26 0.0013๐‘๐‘‘ โ‰ฅ0.0013๐‘๐‘‘ ๏œ As,min = 0.0013bd = 0.0013 ๏‚ด 3000 ๏‚ด 397 = 1589mm2 As,max = 0.04Ac = 0.04bh = 0.04 ๏‚ด 3000 ๏‚ด 450 = 54000mm2 Provide 24H12 (As,prov = 2715mm2)
  • 31. (i) Vertical Shear Critical shear at 1.0d from face of column: ๏œ Design shear force, VEd = 470 ๏‚ด 0.953 = 448kN 3 m 0.953 m 3 m 953 mm 1.35 m w = 470 kN/m d = 397 mm VEd
  • 32. (i) Vertical Shear ๐‘˜ = 1+ 200 = 1+ ๐‘‘ 397 200 = 1.71 ๏€ผ 2.0 Note: Bar extend beyond critical section at = 953 โ€“ 35 = 918 mm ๏€พ ๐‘™๐‘๐‘‘ + ๐‘‘ = 40โˆ… + ๐‘‘ = 40 ร— 12 + 397 = 877 mm ๏œ Asl = 2715mm2 ๐‘™ ๐œŒ = ๐‘  ๐‘™ ๐‘๐‘‘ ๐ด 2715 3000 ร— 397 = = 0.0023 โ‰ค 0.02
  • 33. (i) Vertical Shear ๐‘‰๐‘…๐‘‘,๐‘ = 0.12๐‘˜ 100๐œŒ๐‘™๐‘“๐‘๐‘˜ 1/3 ๐‘๐‘‘ = 0.12 ร— 1.71 100 ร— 0.0023 ร— 25 1/3 3000 ร— 397 = 436463 N = 436 kN ๐‘‰๐‘š๐‘–๐‘› = ๐‘“๐‘๐‘˜ 0.035๐‘˜3/2 ๐‘๐‘‘ = 0.035 ร— 1.713/2 25 3000 ร— 397 = 465970 ๐‘ = 466 kN VEd (448 kN) ๏€ผ Vmin (466 kN) ๏ƒจ OK
  • 34. (ii) Punching Shear Critical shear at 2.0d from face of column: Average d = 450 โ€“ 35 โ€“ 12 = 403 mm ๏œ 2d = 806 mm Control perimeter, u = (4 ๏‚ด 300) + (2๏ฐ ๏‚ด 806) = 6265 mm Area within perimeter, A = (0.30 ๏‚ด 0.30) + (4 ๏‚ด 0.30 ๏‚ด 0.806) + (๏ฐ ๏‚ด 0.8062) = 3.10m2 1350 2d = 806 300 300 2d = 806 544 ๏€ผ ๐‘™๐‘๐‘‘ + ๐‘‘ = 40โˆ… + ๐‘‘ = 40 ร— 12 + 397 = 877 mm ๏œ Reinforcement NOT contributed to punching resistance
  • 35. (ii) Punching Shear Punching shear force: VEd = 157 (32 โ€“ 3.10) = 925kN Punching shear resistance: ๐‘‰๐‘…๐‘‘,๐‘ = ๐‘‰๐‘š๐‘–๐‘› = 0.035๐‘˜3/2๐‘“๐‘๐‘˜ 1/2 ๐‘ข๐‘‘ 25 1/2 = 0.035 1.71 3/2 6265 ร— 403 = 983199 N = 983 kN ๏€พ VEd (925 kN) ๏ƒจ OK Soil pressure = 157 kN/m2 Aperimeter = 3.10 m2 Aall = 9m2
  • 36. (iii) Maximum Punching Shear at Column Perimeter Maximum punching shear force: VEd,max = 157 (32 โ€“ 0.09) = 1400kN Maximum shear resistance: ๐‘‰๐‘…๐‘‘,๐‘š๐‘Ž๐‘ฅ = 0.5๐‘ข๐‘‘ 0.6 ๐‘“๐‘๐‘˜ 1 โˆ’ ๐‘“๐‘๐‘˜ 250 1.5 = 0.5 4 ร— 300 ร— 403 0.6 25 25 1 โˆ’ 250 1.5 = 2176 kN ๏€พ VEd,max ๏ƒจ OK Soil pressure = 157 kN/m2 Acolumn = 0.09m2 Aall = 9m2
  • 37. Cracking h = 450 mm ๏€พ 200 mm ๐‘  Steel stress, ๐‘“ = ๐บ๐‘˜+0.3๐‘„๐‘˜ ๐ด๐‘ .๐‘Ÿ๐‘’๐‘ž ๐ด๐‘ ,๐‘๐‘Ÿ๐‘œ๐‘ฃ ๐‘“๐‘ฆ๐‘˜ 1.15 = 600+0.3ร—400 1.35๐บ๐‘˜+1.5๐‘„๐‘˜ 2611 500 1.35ร—600+1.5ร—400 2715 1.15 = 213 N/mm2 For design crack width 0.3 mm: Maximum allowable bar spacing = 200 mm Actual bar spacing = 3000โˆ’2 35 โˆ’12 23 = 127 mm ๏€ผ 200 mm Cracking OK Max bar spacing
  • 40. โ€ข Design Life = 50 years (Table 2.1: EN 1990) โ€ข Exposure Class = XC3 โ€ข fck = 30 N/mm2 โ€ข fyk = 500 N/mm2 โ€ข ๏งsoil = 150 N/mm2 โ€ข Unit weight of concrete = 25 kN/m3 โ€ข Assumed ๏ฆbar = 12 mm Axial Force, N = 1500 kN Moment = 50 kNm B h Column size: 250 ๏‚ด 350 mm H
  • 41. Durability & Bond Requirements Min cover regards to bond, cmin,b = 12 mm Min cover regards to durability, cmin,dur = 25 mm Allowance in design for deviation, ๏„cdev = 10mm Nominal cover, cnom = cmin + ๏„cdev = 25 + 10 = 35mm ๏œ cnom = 35mm cmin = 25mm
  • 42. Size Service axial, N Service moment, M Assumed selfweight 10% of service load , W = 1500 kN / 1.40 = 1071 kN = 50 kNm / 1.40 = 36.1 kNm = 100 kN ๐›พ๐‘ ๐‘œ๐‘–๐‘™ ๐‘+๐‘Š 1071+107.1 150 Area of footing required = = = 7.85 ๐‘š2 ๏œ Try footing size, B ๏‚ด H ๏‚ด h = 2.80 m ๏‚ด 3.50 m ๏‚ด 0.65 m Area, A = 9.80m2 Selfweight, W = 9.80 ๏‚ด0.65 ๏‚ด 25 = 159 kN
  • 43. Size (Continued) ๐ผ๐‘ฅ ๐‘ฅ 3 3 = ๐ต๐ป = 2.8ร—3.5 = 10.0 m4 12 12 ๐‘+๐‘Š ๐ด + ๐‘€๐‘ฆ ๐ผ = 1071+159 9.80 + 50ร—1.75 10.0 ๐‘ฆ = ๐ป = 3.5 = 1.75m 2 2 Maximum soil pressure, ๐‘ƒ = = 132 kN/m2 ๏‚ฃ 150 kN/m2 ๏ƒจ OK B H x x
  • 44. Analysis Ultimate soil pressure, ๐‘ƒ = ๐‘ ยฑ ๐‘€๐‘ฆ = 1500 ยฑ ๐ด ๐ผ 9.80 10.0 50ร—1.75 = 153 ยฑ 8.7 kN/m2 ๏œ Pmin = 144 kN/m2 and Pmax = 162 kN/m2 1.575 m 1.575 m 144 1.275 x 0.35 m x y y 162 154 144 162
  • 45. Analysis (Continued) ๐‘€๐‘ฅ๐‘ฅ = 154 ร— 1.5752 2 + 162 โˆ’ 154 1.575 2 2 ร— 1.575 ร— 3 = 197 kNm/m ๏‚ด 2.80 m = 553kNm 2 2 ๐‘€ = ๐Ÿ๐Ÿ“๐Ÿ‘ร— 1.275 = 124 kNm/m ๏‚ด 3.50 m= ๐‘ฆ๐‘ฆ 435 kNm 1.575 m 1.575 m 144 0.35 m 1.275 x x y y 162 154 144 + 162 = 2
  • 46. Effective Depth dx = h โ€“ c โ€“ 0.5๏ฆbar = 650 โ€“ 35 โ€“ (0.5 ๏‚ด 12) = 609 mm dy = h โ€“ c โ€“ 1.5๏ฆbar = 650 โ€“ 35 โ€“ (1.5 ๏‚ด 12) = 597 mm Main Reinforcement โ€“ Longitudinal Bar ๐พ = ๐‘€๐‘ฅ๐‘ฅ 553ร—106 ๐‘“๐‘๐‘˜๐‘๐‘‘2 30ร—2800ร—6092 bal = = 0.018 ๏€ผ K = 0.167 ๏œ Compression reinforcement is NOT required ๐‘ง = ๐‘‘ 0.25 โˆ’ ๐พ 1.134 = 0.98๐‘‘ ๏€พ 0.95d ๐ด๐‘ ,๐‘Ÿ๐‘’ ๐‘ž = ๐‘€๐‘ฅ๐‘ฅ 0.87๐‘“๐‘ฆ๐‘˜๐‘ง = 553ร—106 0.87ร—500ร—0.95ร—609 = ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ• mm2
  • 47. Minimum & Maximum Area of Reinforcement ๐ด๐‘ ,๐‘š๐‘– ๐‘› = 0.26 ๐‘“๐‘๐‘ก๐‘š ๐‘“๐‘ฆ๐‘˜ 2.90 500 ๐‘๐‘‘ = 0.26 0.0013๐‘๐‘‘ โ‰ฅ0.0013๐‘๐‘‘ ๏œ As,min = 0.0013bd = 0.0013 ๏‚ด 2800 ๏‚ด 609 = 2217mm2 As,max = 0.04Ac = 0.04bh = 0.04 ๏‚ด 2800 ๏‚ด 609 = 72800mm2 Since As ๏€ผ As,min, Use As,min = 2217 mm2 Provide 21H12 (As = 2375mm2)
  • 48. Main Reinforcement โ€“ Transverse Bar ๐พ = ๐‘€๐‘ฆ๐‘ฆ 435ร—106 ๐‘“๐‘๐‘˜๐‘๐‘‘2 30ร—3500ร—5972 bal = = 0.018 ๏€ผ K = 0.167 ๏œ Compression reinforcement is NOT required ๐‘ง = ๐‘‘ 0.25 โˆ’ ๐พ 1.134 = 0.99๐‘‘ ๏€พ 0.95d ๐ด๐‘ ,๐‘Ÿ๐‘’ ๐‘ž = ๐‘€๐‘ฆ๐‘ฆ 0.87๐‘“๐‘ฆ๐‘˜๐‘ง = 435ร—106 0.87ร—500ร—0.95ร—597 = ๐Ÿ๐Ÿ•๐Ÿ”๐Ÿ“mm2
  • 49. Minimum & Maximum Area of Reinforcement ๐ด๐‘ ,๐‘š๐‘– ๐‘› = 0.26 ๐‘“๐‘๐‘ก๐‘š ๐‘“๐‘ฆ๐‘˜ 2.90 500 ๐‘๐‘‘ = 0.26 0.0013๐‘๐‘‘ โ‰ฅ0.0013๐‘๐‘‘ ๏œ As,min = 0.0013bd = 0.0013 ๏‚ด 3500 ๏‚ด 597 = 3147mm2 As,max = 0.04Ac = 0.04bh = 0.04 ๏‚ด 3500 ๏‚ด 597 = 91000mm2 Since As ๏€ผ As,min, Use As,min = 3147 mm2 Provide 28H12 (As = 3167mm2)
  • 50. (i) Vertical Shear Critical shear at 1.0d from face of column: Average pressure at critical section: = 144 + 2.891 3.50 ร— 18 = 159 kN/m2 ๏œ Design shear force, VEd = 159 ๏‚ด 0.966๏‚ด 2.80 = 431 kN 144 2.891 162 159 0.966 d = 0.609 2.8 Note: Bar extend beyond critical section at = 966 โ€“ 35 = 931 mm ๏€พ ๐‘™๐‘๐‘‘ + ๐‘‘ = 36โˆ… + ๐‘‘ = 36 ร— 12 + 609 = 1041 mm ๏œ Asl = 0mm2
  • 51. (i) Vertical Shear ๐‘˜ = 1 + ๐‘‘ 200 = 1 + 609 200 = 1.57 ๏€ผ 2.0 ๐‘™ ๐œŒ = ๐ด๐‘  ๐‘™ ๐‘๐‘‘ = 0 ๏œ ๐‘‰๐‘…๐‘‘,๐‘ = 0.12๐‘˜ 100๐œŒ๐‘™๐‘“๐‘๐‘˜ 1/3 ๐‘๐‘‘ = 0.12 ร— 1.57 100 ร— 0 ร— 30 1/3 2800 ร— 609 = 0 N = 0 kN ๏œ ๐‘‰๐‘š๐‘–๐‘› = 0.035๐‘˜3/2 ๐‘“๐‘๐‘˜ ๐‘๐‘‘ = 0.035 ร— 1.573/2 30 2800 ร— 609 = 644949 ๐‘ = 645 kN VEd (430 kN) ๏€ผ Vmin (645 kN) ๏ƒจ OK
  • 52. (ii) Punching Shear Critical shear at 2.0d from face of column: Average ๐‘‘ = 609+597 2 = 603 mm ๏œ 2d = 1206mm Control perimeter; u = 2(350 + 250) + (2๏ฐ ๏‚ด 1206) = 8779mm Area within perimeter; A = (0.35 ๏‚ด 0.25) + (2 ๏‚ด 0.35 ๏‚ด1.206) + (2 ๏‚ด 0.25 ๏‚ด 1.206) + (๏ฐ ๏‚ด1.2062) = 6.10 m2 3500 2d = 1206 350 250 2d = 1206 69 369 ๏€ผ ๐‘™๐‘๐‘‘ + ๐‘‘ = 36โˆ… + ๐‘‘ = 36 ร— 12 + 609 = 1041 mm ๏œ Reinforcement NOT contributed to punching resistance 2800
  • 53. (ii) Punching Shear Average punching shear force at control perimeter: VEd = 153 [(2.80 ๏‚ด 3.50) โ€“ 6.10] = 566kN ๐‘ฃ๐ธ๐‘‘ Punching shear stress: ๐›ฝ๐‘‰ = ๐ธ๐‘‘ ๐‘ข๐‘‘ Where ๐›ฝ = 1 +๐‘˜ ๐‘€๐ธ๐‘‘ ๐‘‰๐ธ๐‘‘ ๐‘ข1 ๐‘Š1 ๐‘2 250 k = 0.65 ๏ƒจ ๐‘1 = 350 = 1.4 W1 = 0.5๐‘1 2 + ๐‘1๐‘2 + 4๐‘2๐‘‘ + 16๐‘‘2 + 2๐œ‹๐‘‘๐‘1 = 0.5(3502) + 350 ร— 250 + 4 ร— 250 ร— 603 16 6032 + 2๐œ‹ ร— 603 ร— 350 = 7.9 ๏‚ด 106 mm2 ๏œ ๐›ฝ = 1 +0.65 50ร—106 8779 566ร—103 7.9ร—106 = 1.06 Therefore,๐’—๐‘ฌ๐’… ๐Ÿ–๐Ÿ•๐Ÿ•๐Ÿ—ร—๐Ÿ”๐ŸŽ๐Ÿ— ๐Ÿ‘ = ๐Ÿ.๐ŸŽ๐Ÿ”ร—๐Ÿ“๐Ÿ”๐Ÿ”ร—๐Ÿ๐ŸŽ = ๐ŸŽ. ๐Ÿ๐Ÿ N/mm2 + Soil pressure = 153 kN/m2 Aall = 2.8 ๏‚ด 3.5m Aperimeter =6.1 0 m2
  • 54. (ii) Punching Shear Punching shear resistance: ๐‘˜ = 1 + ๐‘‘ 200 = 1 + 609 200 = 1.57 ๏€ผ 2.0 ๐‘ฃ๐‘…๐‘‘,๐‘ = ๐‘ฃ๐‘š๐‘–๐‘› = 0.035๐‘˜3/2๐‘“๐‘๐‘˜ 1/2 = 0.035 1.57 3/2 30 1/2 = 0.38 N/mm2 ๏€พ vEd (0.11N/mm2) ๏ƒจ OK Soil pressure = 153 kN/m2 Aall = 2.8 ๏‚ด 3.5m Aperimeter = 6.10m2
  • 55. (iii) Maximum Punching Shear at Column Perimeter Maximum punching shear force: VEd,max = 1500kN Column perimeter, uo = 2(350 + 250) = 1200mm Punching shear stress: ๐ธ๐‘‘ ๐›ฝ๐‘‰๐ธ๐‘‘ ๐‘ฃ = Where ๐‘€๐ธ๐‘‘ ๐‘‰๐ธ๐‘‘ ๐‘ข๐‘œ ๐‘Š1 ๐‘ข๐‘œ๐‘‘ ๐›ฝ = 1 +๐‘˜ k = 0.65 ๏ƒจ ๐‘2 250 ๐‘1 = 350 = 1.4 W1 = 0.5๐‘1 2 +๐‘1๐‘2 = 0.5(3502) + 350 ร— 250 = 0.15 ๏‚ด 106mm2 Soil pressure = 153 kN/m2 all A = 2.8 ๏‚ด 3.5 m = 9.8 m2 Acolumn = 0.09 m2
  • 56. (iii) Maximum Punching Shear at Column Perimeter ๏œ ๐›ฝ = 1 +0.65 50ร—106 1200 1500ร—103 0.15ร—106 = 1.17 Therefore, ๐’—๐‘ฌ๐’… = ๐Ÿ.๐Ÿ๐Ÿ•ร—๐Ÿ๐Ÿ“๐ŸŽ๐ŸŽร—๐Ÿ๐ŸŽ๐Ÿ‘ ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽร—๐Ÿ”๐ŸŽ๐Ÿ‘ = ๐Ÿ. ๐Ÿ’๐Ÿ’ N/mm2 Maximum shear resistance: ๐‘ฃ๐‘…๐‘‘,๐‘š๐‘Ž๐‘ฅ = 0.5 0.6 ๐‘“๐‘๐‘˜ 1 โˆ’ ๐‘“๐‘๐‘˜ 250 1.5 30 30 = 0.5 0.6 1 โˆ’ 250 1.5 = 5.28 N/mm2 ๏€พvEd ๏ƒจ OK Soil pressure = 153 kN/m2 all A = 2.8 ๏‚ด 3.5 m = 9.8 m2 Acolumn = 0.09m2
  • 57. Cracking h = 650 mm ๏€พ 200mm = 0.6 1.15 ๐‘“๐‘ฆ๐‘˜ ๐ด๐‘ ,๐‘Ÿ๐‘’๐‘ž ๐ด๐‘ ,๐‘๐‘Ÿ๐‘œ๐‘ฃ 500 2197 1.15 2375 = 0.6 = 241 N/mm2 For design crack width 0.3 mm: Maximum allowable bar spacing = 150 mm Actual bar spacing at x-x = 2800โˆ’2 35 โˆ’12 20 = 136 mm ๏€ผ 150 mm ctual bar spacing at y-y = 3500โˆ’2 35 โˆ’12 27 = 126 mm ๏€ผ 150 mm Cracking OK Max bar spacing Assume steel stress is under quasi-permanent loading:
  ็ฟป่ฏ‘๏ผš