尊敬的 微信汇率:1円 ≈ 0.046166 元 支付宝汇率:1円 ≈ 0.046257元 [退出登录]
SlideShare a Scribd company logo
Parallel and Distributed
Computing
CST342-3
Vajira Thambawita
Learning Outcomes
At the end of the course, the students will be able to
• - define Parallel Algorithms
• - recognize parallel speedup and performance analysis
• - identify task decomposition techniques
• - perform Parallel Programming
• - apply acceleration strategies for algorithms
Contents
• Sequential Computing, History of Parallel Computation, Flynn’s
Taxonomy, Process, threads, Pipeline, parallel models, Shared
Memory UMA,NUMA, CCUMA, Ring ,Mesh , Hypercube topologies,
Cost and Complexity analysis of the interconnection networks, Task
Partition , Data Decomposition, Task Mapping, Tasks and
Decomposition , Processes and Mapping ,Processes Versus
Processors, Granularity, processing, elements, Speedup , Efficiency ,
overhead, Practical ,Introduction to Pthered library, CUDA program ,
MPICH, Introduction to Distributed Computing, Centralized System ,
Comparison , mini Computer ,Workstation models, Process pool ,
analysis, Distributed OS, Remote procedure call ,RPC, Sun RPC,
Distributed Resource Management, Fault Tolerance
References
• Ananth,G, Anshul,G, Karypis,G and Kumar,V, 2003, Introduction to
Parallel Computing , 2nd Edition , Addison Wesley
Optional References:
• CUDA Toolkit Documentation
• Introduction to Parallel Computing, Second Edition By Ananth Grama,
Anshul Gupta, George Karypis, Vipin Kumar
• Programming on Parallel Machines, Norm Matloff
• Introduction to High Performance Computing for Scientists and
Engineers, Georg Hager, Gerhard Wellein
Evaluation
• Continuous Assessment:
• 60% - Lab assignments, Tutorials, Quizzes,
• End Semester Examination:
• 40% - 2hrs or 3hrs paper
Knowledge
• Data structures and algorithms
• C programming
History of computing
Four decades of computing
• Batch Era
• Time sharing Era
• Desktop Era
• Network Era
Batch era
• Batch processing
• Is execution of a series of programs on a computer
without manual intervention
• The term originated in the days when users entered
programs on punch cards
Time-sharing Era
• time-sharing is the sharing of a computing
resource among many users by means of
multiprogramming and multi-tasking
• Developing a system that supported multiple
users at the same time
Desktop Era
• Personal Computers (PCs)
• With WAN
Network Era
• Systems with:
• Shared memory
• Distributed memory
• Example for parallel computers: Intel iPSC, nCUBE
FLYNN's taxonomy of computer
architecture
Two types of information flow into processor:
 Instructions
 Data
what are instructions and data?
FLYNN's taxonomy of computer
architecture
1. single-instruction single-data streams (SISD)
2. single-instruction multiple-data streams (SIMD)
3. multiple-instruction single-data streams (MISD)
4. multiple-instruction multiple-data streams (MIMD)
Parallel computing?
Serial computing
Parallel computing?
Parallel Computers
• all stand-alone computers today are parallel from a hardware
perspective
Parallel Computers
• Networks connect multiple stand-alone computers (nodes) to make
larger parallel computer clusters.
Why Use Parallel Computing?
• SAVE TIME AND/OR MONEY:
Why Use Parallel Computing?
• SOLVE LARGER / MORE COMPLEX PROBLEMS
Grand Challenge Problems ?
Why Use Parallel Computing?
• PROVIDE CONCURRENCY
Why Use Parallel Computing?
• TAKE ADVANTAGE OF NON-LOCAL RESOURCES:
Why Use Parallel Computing?
• MAKE BETTER USE OF UNDERLYING PARALLEL HARDWARE
• Modern computers, even laptops, are parallel in architecture with multiple
processors/cores
BACK to Flynn's Classical Taxonomy
Single Instruction Single Data
(SISD)
• A serial (non-parallel) computer
• This is the oldest type of computer
UNIVAC1
IBM 360
CRAY1 CDC 7600 PDP1
Single Instruction Multiple Data
(SIMD)
ILLIAC IV
MasPar
Cray X-MP
Cray Y-MP
Cell Processor (GPU)
Multiple Instruction Single Data
The Space Shuttle flight control computers
Multiple Instruction Multiple Data
(MIMD)
IBM POWER5
HP/Compaq Alphaserver
Intel IA32
AMD Opteron
What are we going to learn?
Shared Memory System
• A shared memory system typically accomplishes
interprocessor coordination through a global memory shared
by all processors.
• Ex: Server systems, GPGPU
Message Passing System
(Distributed Memory)
• This kind of systems typically combine the local
memory and processor at each node of the
interconnection network
• There is no global memory
• Use message passing technique to move data from
one local memory to another
Limits and Costs of Parallel Programming
• Amdahl's Law:
Amdahl's Law states that potential program speedup is defined by the
fraction of code (P) that can be parallelized:
𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1
1 − 𝑝
• If none of the code can be parallelized, P = 0 and the speedup = 1 (no
speedup).
• If all of the code is parallelized, P = 1 and the speedup is infinite (in
theory).
Limits and Costs of Parallel Programming
• If 50% of the code can be parallelized, maximum speedup = 2,
meaning the code will run twice as fast.
Limits and Costs of Parallel Programming
• Introducing the number of processors performing the parallel fraction
of work, the relationship can be modeled by:
𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
1
𝑃
𝑁
+ 𝑆
• where P = parallel fraction, N = number of processors and S = serial
fraction
Limits and Costs of Parallel Programming
Next
• Parallel Computer Memory Architectures

More Related Content

What's hot

Distributed & parallel system
Distributed & parallel systemDistributed & parallel system
Distributed & parallel system
Manish Singh
 
Communication primitives
Communication primitivesCommunication primitives
Communication primitives
Student
 
Parallel computing
Parallel computingParallel computing
Parallel computing
Vinay Gupta
 
Parallel algorithms
Parallel algorithmsParallel algorithms
Parallel algorithms
Danish Javed
 
6.distributed shared memory
6.distributed shared memory6.distributed shared memory
6.distributed shared memory
Gd Goenka University
 
Knowledge representation
Knowledge representationKnowledge representation
Knowledge representation
Md. Tanvir Masud
 
Introduction to Distributed System
Introduction to Distributed SystemIntroduction to Distributed System
Introduction to Distributed System
Sunita Sahu
 
CS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSCS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMS
Kathirvel Ayyaswamy
 
Complexity of Algorithm
Complexity of AlgorithmComplexity of Algorithm
Complexity of Algorithm
Muhammad Muzammal
 
Chpt7
Chpt7Chpt7
Threads (operating System)
Threads (operating System)Threads (operating System)
Threads (operating System)
Prakhar Maurya
 
Parallel Programming
Parallel ProgrammingParallel Programming
Parallel Programming
Uday Sharma
 
Predicate logic
 Predicate logic Predicate logic
Predicate logic
Harini Balamurugan
 
Lecture 4 principles of parallel algorithm design updated
Lecture 4   principles of parallel algorithm design updatedLecture 4   principles of parallel algorithm design updated
Lecture 4 principles of parallel algorithm design updated
Vajira Thambawita
 
Rule based system
Rule based systemRule based system
Rule based system
Dr. C.V. Suresh Babu
 
8. mutual exclusion in Distributed Operating Systems
8. mutual exclusion in Distributed Operating Systems8. mutual exclusion in Distributed Operating Systems
8. mutual exclusion in Distributed Operating Systems
Dr Sandeep Kumar Poonia
 
Truth management system
Truth  management systemTruth  management system
Truth management system
Mohammad Kamrul Hasan
 
Multithreading
MultithreadingMultithreading
Multithreading
A B Shinde
 
Object Oriented Design
Object Oriented DesignObject Oriented Design
Object Oriented Design
Sudarsun Santhiappan
 
Course outline of parallel and distributed computing
Course outline of parallel and distributed computingCourse outline of parallel and distributed computing
Course outline of parallel and distributed computing
National College of Business Administration & Economics ( NCBA&E)
 

What's hot (20)

Distributed & parallel system
Distributed & parallel systemDistributed & parallel system
Distributed & parallel system
 
Communication primitives
Communication primitivesCommunication primitives
Communication primitives
 
Parallel computing
Parallel computingParallel computing
Parallel computing
 
Parallel algorithms
Parallel algorithmsParallel algorithms
Parallel algorithms
 
6.distributed shared memory
6.distributed shared memory6.distributed shared memory
6.distributed shared memory
 
Knowledge representation
Knowledge representationKnowledge representation
Knowledge representation
 
Introduction to Distributed System
Introduction to Distributed SystemIntroduction to Distributed System
Introduction to Distributed System
 
CS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSCS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMS
 
Complexity of Algorithm
Complexity of AlgorithmComplexity of Algorithm
Complexity of Algorithm
 
Chpt7
Chpt7Chpt7
Chpt7
 
Threads (operating System)
Threads (operating System)Threads (operating System)
Threads (operating System)
 
Parallel Programming
Parallel ProgrammingParallel Programming
Parallel Programming
 
Predicate logic
 Predicate logic Predicate logic
Predicate logic
 
Lecture 4 principles of parallel algorithm design updated
Lecture 4   principles of parallel algorithm design updatedLecture 4   principles of parallel algorithm design updated
Lecture 4 principles of parallel algorithm design updated
 
Rule based system
Rule based systemRule based system
Rule based system
 
8. mutual exclusion in Distributed Operating Systems
8. mutual exclusion in Distributed Operating Systems8. mutual exclusion in Distributed Operating Systems
8. mutual exclusion in Distributed Operating Systems
 
Truth management system
Truth  management systemTruth  management system
Truth management system
 
Multithreading
MultithreadingMultithreading
Multithreading
 
Object Oriented Design
Object Oriented DesignObject Oriented Design
Object Oriented Design
 
Course outline of parallel and distributed computing
Course outline of parallel and distributed computingCourse outline of parallel and distributed computing
Course outline of parallel and distributed computing
 

Similar to Lecture 1 introduction to parallel and distributed computing

Lecture 2
Lecture 2Lecture 2
Lecture 2
Mr SMAK
 
CA UNIT IV.pptx
CA UNIT IV.pptxCA UNIT IV.pptx
CA UNIT IV.pptx
ssuser9dbd7e
 
High performance computing
High performance computingHigh performance computing
High performance computing
punjab engineering college, chandigarh
 
Computer system Architecture. This PPT is based on computer system
Computer system Architecture. This PPT is based on computer systemComputer system Architecture. This PPT is based on computer system
Computer system Architecture. This PPT is based on computer system
mohantysikun0
 
Parallel & Distributed processing
Parallel & Distributed processingParallel & Distributed processing
Parallel & Distributed processing
Syed Zaid Irshad
 
Underlying principles of parallel and distributed computing
Underlying principles of parallel and distributed computingUnderlying principles of parallel and distributed computing
Underlying principles of parallel and distributed computing
GOVERNMENT COLLEGE OF ENGINEERING,TIRUNELVELI
 
unit 4.pptx
unit 4.pptxunit 4.pptx
unit 4.pptx
unit 4.pptxunit 4.pptx
Lec 2 (parallel design and programming)
Lec 2 (parallel design and programming)Lec 2 (parallel design and programming)
Lec 2 (parallel design and programming)
Sudarshan Mondal
 
01 introduction fundamentals_of_parallelism_and_code_optimization-www.astek.ir
01 introduction fundamentals_of_parallelism_and_code_optimization-www.astek.ir01 introduction fundamentals_of_parallelism_and_code_optimization-www.astek.ir
01 introduction fundamentals_of_parallelism_and_code_optimization-www.astek.ir
aminnezarat
 
Parallel Computing-Part-1.pptx
Parallel Computing-Part-1.pptxParallel Computing-Part-1.pptx
Parallel Computing-Part-1.pptx
krnaween
 
distributed system lab materials about ad
distributed system lab materials about addistributed system lab materials about ad
distributed system lab materials about ad
milkesa13
 
Parallel architecture &programming
Parallel architecture &programmingParallel architecture &programming
Parallel architecture &programming
Ismail El Gayar
 
Computing notes
Computing notesComputing notes
Computing notes
thenraju24
 
Parallel architecture-programming
Parallel architecture-programmingParallel architecture-programming
Parallel architecture-programming
Shaveta Banda
 
Overview of HPC.pptx
Overview of HPC.pptxOverview of HPC.pptx
Overview of HPC.pptx
sundariprabhu
 
intro, definitions, basic laws+.pptx
intro, definitions, basic laws+.pptxintro, definitions, basic laws+.pptx
intro, definitions, basic laws+.pptx
ssuser413a98
 
Floating Point Operations , Memory Chip Organization , Serial Bus Architectur...
Floating Point Operations , Memory Chip Organization , Serial Bus Architectur...Floating Point Operations , Memory Chip Organization , Serial Bus Architectur...
Floating Point Operations , Memory Chip Organization , Serial Bus Architectur...
VAISHNAVI MADHAN
 
Aca module 1
Aca module 1Aca module 1
Aca module 1
Avinash_N Rao
 
parallel computing.ppt
parallel computing.pptparallel computing.ppt
parallel computing.ppt
ssuser413a98
 

Similar to Lecture 1 introduction to parallel and distributed computing (20)

Lecture 2
Lecture 2Lecture 2
Lecture 2
 
CA UNIT IV.pptx
CA UNIT IV.pptxCA UNIT IV.pptx
CA UNIT IV.pptx
 
High performance computing
High performance computingHigh performance computing
High performance computing
 
Computer system Architecture. This PPT is based on computer system
Computer system Architecture. This PPT is based on computer systemComputer system Architecture. This PPT is based on computer system
Computer system Architecture. This PPT is based on computer system
 
Parallel & Distributed processing
Parallel & Distributed processingParallel & Distributed processing
Parallel & Distributed processing
 
Underlying principles of parallel and distributed computing
Underlying principles of parallel and distributed computingUnderlying principles of parallel and distributed computing
Underlying principles of parallel and distributed computing
 
unit 4.pptx
unit 4.pptxunit 4.pptx
unit 4.pptx
 
unit 4.pptx
unit 4.pptxunit 4.pptx
unit 4.pptx
 
Lec 2 (parallel design and programming)
Lec 2 (parallel design and programming)Lec 2 (parallel design and programming)
Lec 2 (parallel design and programming)
 
01 introduction fundamentals_of_parallelism_and_code_optimization-www.astek.ir
01 introduction fundamentals_of_parallelism_and_code_optimization-www.astek.ir01 introduction fundamentals_of_parallelism_and_code_optimization-www.astek.ir
01 introduction fundamentals_of_parallelism_and_code_optimization-www.astek.ir
 
Parallel Computing-Part-1.pptx
Parallel Computing-Part-1.pptxParallel Computing-Part-1.pptx
Parallel Computing-Part-1.pptx
 
distributed system lab materials about ad
distributed system lab materials about addistributed system lab materials about ad
distributed system lab materials about ad
 
Parallel architecture &programming
Parallel architecture &programmingParallel architecture &programming
Parallel architecture &programming
 
Computing notes
Computing notesComputing notes
Computing notes
 
Parallel architecture-programming
Parallel architecture-programmingParallel architecture-programming
Parallel architecture-programming
 
Overview of HPC.pptx
Overview of HPC.pptxOverview of HPC.pptx
Overview of HPC.pptx
 
intro, definitions, basic laws+.pptx
intro, definitions, basic laws+.pptxintro, definitions, basic laws+.pptx
intro, definitions, basic laws+.pptx
 
Floating Point Operations , Memory Chip Organization , Serial Bus Architectur...
Floating Point Operations , Memory Chip Organization , Serial Bus Architectur...Floating Point Operations , Memory Chip Organization , Serial Bus Architectur...
Floating Point Operations , Memory Chip Organization , Serial Bus Architectur...
 
Aca module 1
Aca module 1Aca module 1
Aca module 1
 
parallel computing.ppt
parallel computing.pptparallel computing.ppt
parallel computing.ppt
 

More from Vajira Thambawita

Lecture 3 parallel programming platforms
Lecture 3   parallel programming platformsLecture 3   parallel programming platforms
Lecture 3 parallel programming platforms
Vajira Thambawita
 
Lecture 2 more about parallel computing
Lecture 2   more about parallel computingLecture 2   more about parallel computing
Lecture 2 more about parallel computing
Vajira Thambawita
 
Lecture 12 localization and navigation
Lecture 12 localization and navigationLecture 12 localization and navigation
Lecture 12 localization and navigation
Vajira Thambawita
 
Lecture 11 neural network principles
Lecture 11 neural network principlesLecture 11 neural network principles
Lecture 11 neural network principles
Vajira Thambawita
 
Lecture 10 mobile robot design
Lecture 10 mobile robot designLecture 10 mobile robot design
Lecture 10 mobile robot design
Vajira Thambawita
 
Lecture 09 control
Lecture 09 controlLecture 09 control
Lecture 09 control
Vajira Thambawita
 
Lecture 08 robots and controllers
Lecture 08 robots and controllersLecture 08 robots and controllers
Lecture 08 robots and controllers
Vajira Thambawita
 
Lecture 07 more about pic
Lecture 07 more about picLecture 07 more about pic
Lecture 07 more about pic
Vajira Thambawita
 
Lecture 06 pic programming in c
Lecture 06 pic programming in cLecture 06 pic programming in c
Lecture 06 pic programming in c
Vajira Thambawita
 
Lecture 05 pic io port programming
Lecture 05 pic io port programmingLecture 05 pic io port programming
Lecture 05 pic io port programming
Vajira Thambawita
 
Lecture 04 branch call and time delay
Lecture 04  branch call and time delayLecture 04  branch call and time delay
Lecture 04 branch call and time delay
Vajira Thambawita
 
Lecture 03 basics of pic
Lecture 03 basics of picLecture 03 basics of pic
Lecture 03 basics of pic
Vajira Thambawita
 
Lecture 02 mechatronics systems
Lecture 02 mechatronics systemsLecture 02 mechatronics systems
Lecture 02 mechatronics systems
Vajira Thambawita
 
Lecture 1 - Introduction to embedded system and Robotics
Lecture 1 - Introduction to embedded system and RoboticsLecture 1 - Introduction to embedded system and Robotics
Lecture 1 - Introduction to embedded system and Robotics
Vajira Thambawita
 
Lec 09 - Registers and Counters
Lec 09 - Registers and CountersLec 09 - Registers and Counters
Lec 09 - Registers and Counters
Vajira Thambawita
 
Lec 08 - DESIGN PROCEDURE
Lec 08 - DESIGN PROCEDURELec 08 - DESIGN PROCEDURE
Lec 08 - DESIGN PROCEDURE
Vajira Thambawita
 
Lec 07 - ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS
Lec 07 - ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITSLec 07 - ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS
Lec 07 - ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS
Vajira Thambawita
 
Lec 06 - Synchronous Sequential Logic
Lec 06 - Synchronous Sequential LogicLec 06 - Synchronous Sequential Logic
Lec 06 - Synchronous Sequential Logic
Vajira Thambawita
 
Lec 05 - Combinational Logic
Lec 05 - Combinational LogicLec 05 - Combinational Logic
Lec 05 - Combinational Logic
Vajira Thambawita
 
Lec 04 - Gate-level Minimization
Lec 04 - Gate-level MinimizationLec 04 - Gate-level Minimization
Lec 04 - Gate-level Minimization
Vajira Thambawita
 

More from Vajira Thambawita (20)

Lecture 3 parallel programming platforms
Lecture 3   parallel programming platformsLecture 3   parallel programming platforms
Lecture 3 parallel programming platforms
 
Lecture 2 more about parallel computing
Lecture 2   more about parallel computingLecture 2   more about parallel computing
Lecture 2 more about parallel computing
 
Lecture 12 localization and navigation
Lecture 12 localization and navigationLecture 12 localization and navigation
Lecture 12 localization and navigation
 
Lecture 11 neural network principles
Lecture 11 neural network principlesLecture 11 neural network principles
Lecture 11 neural network principles
 
Lecture 10 mobile robot design
Lecture 10 mobile robot designLecture 10 mobile robot design
Lecture 10 mobile robot design
 
Lecture 09 control
Lecture 09 controlLecture 09 control
Lecture 09 control
 
Lecture 08 robots and controllers
Lecture 08 robots and controllersLecture 08 robots and controllers
Lecture 08 robots and controllers
 
Lecture 07 more about pic
Lecture 07 more about picLecture 07 more about pic
Lecture 07 more about pic
 
Lecture 06 pic programming in c
Lecture 06 pic programming in cLecture 06 pic programming in c
Lecture 06 pic programming in c
 
Lecture 05 pic io port programming
Lecture 05 pic io port programmingLecture 05 pic io port programming
Lecture 05 pic io port programming
 
Lecture 04 branch call and time delay
Lecture 04  branch call and time delayLecture 04  branch call and time delay
Lecture 04 branch call and time delay
 
Lecture 03 basics of pic
Lecture 03 basics of picLecture 03 basics of pic
Lecture 03 basics of pic
 
Lecture 02 mechatronics systems
Lecture 02 mechatronics systemsLecture 02 mechatronics systems
Lecture 02 mechatronics systems
 
Lecture 1 - Introduction to embedded system and Robotics
Lecture 1 - Introduction to embedded system and RoboticsLecture 1 - Introduction to embedded system and Robotics
Lecture 1 - Introduction to embedded system and Robotics
 
Lec 09 - Registers and Counters
Lec 09 - Registers and CountersLec 09 - Registers and Counters
Lec 09 - Registers and Counters
 
Lec 08 - DESIGN PROCEDURE
Lec 08 - DESIGN PROCEDURELec 08 - DESIGN PROCEDURE
Lec 08 - DESIGN PROCEDURE
 
Lec 07 - ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS
Lec 07 - ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITSLec 07 - ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS
Lec 07 - ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS
 
Lec 06 - Synchronous Sequential Logic
Lec 06 - Synchronous Sequential LogicLec 06 - Synchronous Sequential Logic
Lec 06 - Synchronous Sequential Logic
 
Lec 05 - Combinational Logic
Lec 05 - Combinational LogicLec 05 - Combinational Logic
Lec 05 - Combinational Logic
 
Lec 04 - Gate-level Minimization
Lec 04 - Gate-level MinimizationLec 04 - Gate-level Minimization
Lec 04 - Gate-level Minimization
 

Recently uploaded

Interprofessional Education Platform Introduction.pdf
Interprofessional Education Platform Introduction.pdfInterprofessional Education Platform Introduction.pdf
Interprofessional Education Platform Introduction.pdf
Ben Aldrich
 
What are the new features in the Fleet Odoo 17
What are the new features in the Fleet Odoo 17What are the new features in the Fleet Odoo 17
What are the new features in the Fleet Odoo 17
Celine George
 
Contiguity Of Various Message Forms - Rupam Chandra.pptx
Contiguity Of Various Message Forms - Rupam Chandra.pptxContiguity Of Various Message Forms - Rupam Chandra.pptx
Contiguity Of Various Message Forms - Rupam Chandra.pptx
Kalna College
 
Talking Tech through Compelling Visual Aids
Talking Tech through Compelling Visual AidsTalking Tech through Compelling Visual Aids
Talking Tech through Compelling Visual Aids
MattVassar1
 
nutrition in plants chapter 1 class 7...
nutrition in plants chapter 1 class 7...nutrition in plants chapter 1 class 7...
nutrition in plants chapter 1 class 7...
chaudharyreet2244
 
220711130083 SUBHASHREE RAKSHIT Internet resources for social science
220711130083 SUBHASHREE RAKSHIT  Internet resources for social science220711130083 SUBHASHREE RAKSHIT  Internet resources for social science
220711130083 SUBHASHREE RAKSHIT Internet resources for social science
Kalna College
 
The Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teachingThe Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teaching
Derek Wenmoth
 
Keynote given on June 24 for MASSP at Grand Traverse City
Keynote given on June 24 for MASSP at Grand Traverse CityKeynote given on June 24 for MASSP at Grand Traverse City
Keynote given on June 24 for MASSP at Grand Traverse City
PJ Caposey
 
Creativity for Innovation and Speechmaking
Creativity for Innovation and SpeechmakingCreativity for Innovation and Speechmaking
Creativity for Innovation and Speechmaking
MattVassar1
 
Slides Peluncuran Amalan Pemakanan Sihat.pptx
Slides Peluncuran Amalan Pemakanan Sihat.pptxSlides Peluncuran Amalan Pemakanan Sihat.pptx
Slides Peluncuran Amalan Pemakanan Sihat.pptx
shabeluno
 
Science-9-Lesson-1-The Bohr Model-NLC.pptx pptx
Science-9-Lesson-1-The Bohr Model-NLC.pptx pptxScience-9-Lesson-1-The Bohr Model-NLC.pptx pptx
Science-9-Lesson-1-The Bohr Model-NLC.pptx pptx
Catherine Dela Cruz
 
The basics of sentences session 8pptx.pptx
The basics of sentences session 8pptx.pptxThe basics of sentences session 8pptx.pptx
The basics of sentences session 8pptx.pptx
heathfieldcps1
 
8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity
RuchiRathor2
 
Post init hook in the odoo 17 ERP Module
Post init hook in the  odoo 17 ERP ModulePost init hook in the  odoo 17 ERP Module
Post init hook in the odoo 17 ERP Module
Celine George
 
(T.L.E.) Agriculture: "Ornamental Plants"
(T.L.E.) Agriculture: "Ornamental Plants"(T.L.E.) Agriculture: "Ornamental Plants"
(T.L.E.) Agriculture: "Ornamental Plants"
MJDuyan
 
78 Microsoft-Publisher - Sirin Sultana Bora.pptx
78 Microsoft-Publisher - Sirin Sultana Bora.pptx78 Microsoft-Publisher - Sirin Sultana Bora.pptx
78 Microsoft-Publisher - Sirin Sultana Bora.pptx
Kalna College
 
managing Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptxmanaging Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptx
nabaegha
 
Creation or Update of a Mandatory Field is Not Set in Odoo 17
Creation or Update of a Mandatory Field is Not Set in Odoo 17Creation or Update of a Mandatory Field is Not Set in Odoo 17
Creation or Update of a Mandatory Field is Not Set in Odoo 17
Celine George
 
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
220711130100 udita Chakraborty  Aims and objectives of national policy on inf...220711130100 udita Chakraborty  Aims and objectives of national policy on inf...
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
Kalna College
 
Brand Guideline of Bashundhara A4 Paper - 2024
Brand Guideline of Bashundhara A4 Paper - 2024Brand Guideline of Bashundhara A4 Paper - 2024
Brand Guideline of Bashundhara A4 Paper - 2024
khabri85
 

Recently uploaded (20)

Interprofessional Education Platform Introduction.pdf
Interprofessional Education Platform Introduction.pdfInterprofessional Education Platform Introduction.pdf
Interprofessional Education Platform Introduction.pdf
 
What are the new features in the Fleet Odoo 17
What are the new features in the Fleet Odoo 17What are the new features in the Fleet Odoo 17
What are the new features in the Fleet Odoo 17
 
Contiguity Of Various Message Forms - Rupam Chandra.pptx
Contiguity Of Various Message Forms - Rupam Chandra.pptxContiguity Of Various Message Forms - Rupam Chandra.pptx
Contiguity Of Various Message Forms - Rupam Chandra.pptx
 
Talking Tech through Compelling Visual Aids
Talking Tech through Compelling Visual AidsTalking Tech through Compelling Visual Aids
Talking Tech through Compelling Visual Aids
 
nutrition in plants chapter 1 class 7...
nutrition in plants chapter 1 class 7...nutrition in plants chapter 1 class 7...
nutrition in plants chapter 1 class 7...
 
220711130083 SUBHASHREE RAKSHIT Internet resources for social science
220711130083 SUBHASHREE RAKSHIT  Internet resources for social science220711130083 SUBHASHREE RAKSHIT  Internet resources for social science
220711130083 SUBHASHREE RAKSHIT Internet resources for social science
 
The Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teachingThe Science of Learning: implications for modern teaching
The Science of Learning: implications for modern teaching
 
Keynote given on June 24 for MASSP at Grand Traverse City
Keynote given on June 24 for MASSP at Grand Traverse CityKeynote given on June 24 for MASSP at Grand Traverse City
Keynote given on June 24 for MASSP at Grand Traverse City
 
Creativity for Innovation and Speechmaking
Creativity for Innovation and SpeechmakingCreativity for Innovation and Speechmaking
Creativity for Innovation and Speechmaking
 
Slides Peluncuran Amalan Pemakanan Sihat.pptx
Slides Peluncuran Amalan Pemakanan Sihat.pptxSlides Peluncuran Amalan Pemakanan Sihat.pptx
Slides Peluncuran Amalan Pemakanan Sihat.pptx
 
Science-9-Lesson-1-The Bohr Model-NLC.pptx pptx
Science-9-Lesson-1-The Bohr Model-NLC.pptx pptxScience-9-Lesson-1-The Bohr Model-NLC.pptx pptx
Science-9-Lesson-1-The Bohr Model-NLC.pptx pptx
 
The basics of sentences session 8pptx.pptx
The basics of sentences session 8pptx.pptxThe basics of sentences session 8pptx.pptx
The basics of sentences session 8pptx.pptx
 
8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity8+8+8 Rule Of Time Management For Better Productivity
8+8+8 Rule Of Time Management For Better Productivity
 
Post init hook in the odoo 17 ERP Module
Post init hook in the  odoo 17 ERP ModulePost init hook in the  odoo 17 ERP Module
Post init hook in the odoo 17 ERP Module
 
(T.L.E.) Agriculture: "Ornamental Plants"
(T.L.E.) Agriculture: "Ornamental Plants"(T.L.E.) Agriculture: "Ornamental Plants"
(T.L.E.) Agriculture: "Ornamental Plants"
 
78 Microsoft-Publisher - Sirin Sultana Bora.pptx
78 Microsoft-Publisher - Sirin Sultana Bora.pptx78 Microsoft-Publisher - Sirin Sultana Bora.pptx
78 Microsoft-Publisher - Sirin Sultana Bora.pptx
 
managing Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptxmanaging Behaviour in early childhood education.pptx
managing Behaviour in early childhood education.pptx
 
Creation or Update of a Mandatory Field is Not Set in Odoo 17
Creation or Update of a Mandatory Field is Not Set in Odoo 17Creation or Update of a Mandatory Field is Not Set in Odoo 17
Creation or Update of a Mandatory Field is Not Set in Odoo 17
 
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
220711130100 udita Chakraborty  Aims and objectives of national policy on inf...220711130100 udita Chakraborty  Aims and objectives of national policy on inf...
220711130100 udita Chakraborty Aims and objectives of national policy on inf...
 
Brand Guideline of Bashundhara A4 Paper - 2024
Brand Guideline of Bashundhara A4 Paper - 2024Brand Guideline of Bashundhara A4 Paper - 2024
Brand Guideline of Bashundhara A4 Paper - 2024
 

Lecture 1 introduction to parallel and distributed computing

  • 2. Learning Outcomes At the end of the course, the students will be able to • - define Parallel Algorithms • - recognize parallel speedup and performance analysis • - identify task decomposition techniques • - perform Parallel Programming • - apply acceleration strategies for algorithms
  • 3. Contents • Sequential Computing, History of Parallel Computation, Flynn’s Taxonomy, Process, threads, Pipeline, parallel models, Shared Memory UMA,NUMA, CCUMA, Ring ,Mesh , Hypercube topologies, Cost and Complexity analysis of the interconnection networks, Task Partition , Data Decomposition, Task Mapping, Tasks and Decomposition , Processes and Mapping ,Processes Versus Processors, Granularity, processing, elements, Speedup , Efficiency , overhead, Practical ,Introduction to Pthered library, CUDA program , MPICH, Introduction to Distributed Computing, Centralized System , Comparison , mini Computer ,Workstation models, Process pool , analysis, Distributed OS, Remote procedure call ,RPC, Sun RPC, Distributed Resource Management, Fault Tolerance
  • 4. References • Ananth,G, Anshul,G, Karypis,G and Kumar,V, 2003, Introduction to Parallel Computing , 2nd Edition , Addison Wesley Optional References: • CUDA Toolkit Documentation • Introduction to Parallel Computing, Second Edition By Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar • Programming on Parallel Machines, Norm Matloff • Introduction to High Performance Computing for Scientists and Engineers, Georg Hager, Gerhard Wellein
  • 5. Evaluation • Continuous Assessment: • 60% - Lab assignments, Tutorials, Quizzes, • End Semester Examination: • 40% - 2hrs or 3hrs paper
  • 6. Knowledge • Data structures and algorithms • C programming
  • 8. Four decades of computing • Batch Era • Time sharing Era • Desktop Era • Network Era
  • 9. Batch era • Batch processing • Is execution of a series of programs on a computer without manual intervention • The term originated in the days when users entered programs on punch cards
  • 10. Time-sharing Era • time-sharing is the sharing of a computing resource among many users by means of multiprogramming and multi-tasking • Developing a system that supported multiple users at the same time
  • 11. Desktop Era • Personal Computers (PCs) • With WAN
  • 12. Network Era • Systems with: • Shared memory • Distributed memory • Example for parallel computers: Intel iPSC, nCUBE
  • 13. FLYNN's taxonomy of computer architecture Two types of information flow into processor:  Instructions  Data what are instructions and data?
  • 14. FLYNN's taxonomy of computer architecture 1. single-instruction single-data streams (SISD) 2. single-instruction multiple-data streams (SIMD) 3. multiple-instruction single-data streams (MISD) 4. multiple-instruction multiple-data streams (MIMD)
  • 17. Parallel Computers • all stand-alone computers today are parallel from a hardware perspective
  • 18. Parallel Computers • Networks connect multiple stand-alone computers (nodes) to make larger parallel computer clusters.
  • 19. Why Use Parallel Computing? • SAVE TIME AND/OR MONEY:
  • 20. Why Use Parallel Computing? • SOLVE LARGER / MORE COMPLEX PROBLEMS Grand Challenge Problems ?
  • 21. Why Use Parallel Computing? • PROVIDE CONCURRENCY
  • 22. Why Use Parallel Computing? • TAKE ADVANTAGE OF NON-LOCAL RESOURCES:
  • 23. Why Use Parallel Computing? • MAKE BETTER USE OF UNDERLYING PARALLEL HARDWARE • Modern computers, even laptops, are parallel in architecture with multiple processors/cores
  • 24. BACK to Flynn's Classical Taxonomy
  • 25. Single Instruction Single Data (SISD) • A serial (non-parallel) computer • This is the oldest type of computer UNIVAC1 IBM 360 CRAY1 CDC 7600 PDP1
  • 26. Single Instruction Multiple Data (SIMD) ILLIAC IV MasPar Cray X-MP Cray Y-MP Cell Processor (GPU)
  • 27. Multiple Instruction Single Data The Space Shuttle flight control computers
  • 28. Multiple Instruction Multiple Data (MIMD) IBM POWER5 HP/Compaq Alphaserver Intel IA32 AMD Opteron
  • 29. What are we going to learn?
  • 30. Shared Memory System • A shared memory system typically accomplishes interprocessor coordination through a global memory shared by all processors. • Ex: Server systems, GPGPU
  • 31. Message Passing System (Distributed Memory) • This kind of systems typically combine the local memory and processor at each node of the interconnection network • There is no global memory • Use message passing technique to move data from one local memory to another
  • 32. Limits and Costs of Parallel Programming • Amdahl's Law: Amdahl's Law states that potential program speedup is defined by the fraction of code (P) that can be parallelized: 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1 1 − 𝑝 • If none of the code can be parallelized, P = 0 and the speedup = 1 (no speedup). • If all of the code is parallelized, P = 1 and the speedup is infinite (in theory).
  • 33. Limits and Costs of Parallel Programming • If 50% of the code can be parallelized, maximum speedup = 2, meaning the code will run twice as fast.
  • 34. Limits and Costs of Parallel Programming • Introducing the number of processors performing the parallel fraction of work, the relationship can be modeled by: 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 1 𝑃 𝑁 + 𝑆 • where P = parallel fraction, N = number of processors and S = serial fraction
  • 35. Limits and Costs of Parallel Programming
  • 36. Next • Parallel Computer Memory Architectures
  翻译: