ๅฐŠๆ•ฌ็š„ ๅพฎไฟกๆฑ‡็Ž‡๏ผš1ๅ†† โ‰ˆ 0.046078 ๅ…ƒ ๆ”ฏไป˜ๅฎๆฑ‡็Ž‡๏ผš1ๅ†† โ‰ˆ 0.046168ๅ…ƒ [้€€ๅ‡บ็™ปๅฝ•]
SlideShare a Scribd company logo
Roll no. PUR072BEL005
Design of a Transmission line whose parameters are:
Selection of Most Economical Voltage and Number of Circuits
The most economical voltage is given by the following empirical formula:
Economical Voltage (V eco) = 5.5 *
150**cos
1000*
6.1 Nc
PLt
๏ฆ
๏€ซ
Where,
Lt = length of transmission line =95 km
P = Power to be transmitted =145 MW
Cosร˜ = Power factor = 0.96
Nc = Number of circuits
For Nc= 1
Using the above values, we get
V eco = 5.5 * โˆš
100
1.6
+
200โˆ—1000
0.96โˆ—1โˆ—150
= 209.534 kV
โˆด Nearest Standard Voltage (V1) = 220kV
For Nc= 2
Then, using the above values, we get
V eco = 5.5*โˆš
100
1.6
+
200โˆ—1000
0.96โˆ—2โˆ—150
= 151.319 kV
โˆด Nearest Standard Voltage (V2) = 132 kV
Power to be transmitted (P) =200 MW
Transmission Line Length (Lt) =100 km
Standard Voltage levels
are:
66 kV
132 kV
220 kV
400 kV
500 kV
700 kV
750 kV
765 kV
1000 kV
Roll no. PUR072BEL005
Checking Technical Criterion
Surge Impedance Loading (SIL):
For Nc =1,
Characteristic Impedance (Zc) =400 ฮฉ
SIL1 =
๐‘‰12
๐‘๐‘
=
2202
400
= 121 MW
For Nc =2,
Characteristic Impedance (Zc) = 200 ฮฉ
SIL2 =
๐‘‰22
๐‘๐‘
=
1322
400
= 87.12 MW
Calculation of Multiplying factor (Mf):
For Nc=1,
Mf1 =
๐‘ƒ
๐‘†๐ผ๐ฟ1
=
200
121
= 1.653
For Nc=2,
Mf2 =
๐‘ƒ
๐‘†๐ผ๐ฟ2
=
200
87.12
= 2.296
From Table, for 100 Km line length, Mflimit of the line lies between 2.25 and 2.75.
Therefore, using interpolation to find Mflimit for 100km, we have
Mf๐‘™๐‘–๐‘š๐‘–๐‘ก = 2.75 +
2.25 โˆ’ 2.75
160 โˆ’ 80
(95 โˆ’ 80) = 2.625
Decision:
Here, Mf1<Mf๐‘™๐‘–๐‘š๐‘–๐‘ก and Mf2<Mf๐‘™๐‘–๐‘š๐‘–๐‘ก .
Here both are technically feasible. However the mf margin for Nc=1 is 0.972 and for Nc=2 is
0.329. Since, mf margin for Nc=2 is lower, we select double circuit.
Thus,
Line Length
(km)
Mflimit
80 2.75
160 2.25
240 1.75
320 1.35
480 1.0
640 0.75
Voltage Level for given Power Transmission =132 kV
Number of Circuits (Nc) = 2
Power factor (cosฯ†) = 0.96
Roll no. PUR072BEL005
Air Clearance and Conductor Spacing Calculation
1) Minimum air clearance required from earthed object is given by
๐’‚ =
๐‘‰๐‘Ÿ๐‘š๐‘  ร— 1.1
โˆš3
+ 30 ๐‘๐‘š
=
132 โˆ— โˆš2 ร— 1.1
โˆš3
+ 30
= 148.55 ๐‘๐‘š = 1.48 m
2) Maximum String Swing (ษตmax) = 450
3) Length of string or insulator hanging (l) = a Secษตmax= 148.55 * Sec450
= 210.08 cm =2.10 m
โˆดl=2.10 m
4) Cross arm length (CL) = a (1+tanษตmax) = 148.55 * (1+ tan 450
) = 297.1 cm
โˆดCL = 297.1 cm = 2.97 m
5) Vertical distance between two adjacent line conductor (y) =
22
1
)(
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ ๏€ซ
๏ƒท๏ƒท
๏ƒธ
๏ƒถ
๏ƒง๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ
๏€ซ
CL
al
y
x
al
Where, 0.25 < x/y< 0.333
Lets take x/y = 0.3
y =
210.08+148.55
โˆš1โˆ’(0.3)2(
210.08+148.55
297.1
)
2
= 384.74 ๐‘๐‘š
โˆดDistance between two conductors(y) = 3.84 m
6) x= y * 0.3 = 3.84 m * 0.3 = 1.15 m
โˆด x= 1.15 m
7) Width of tower (b) = 1.5a = 1.5* 1.48 = 2.22 m
โˆด b = 2.22 m
8) Distance between the earth wire and the topmost cross-arm for double circuit:
d= โˆš3 โˆ— ๐ถ๐‘™ โˆ’ ๐‘™ = โˆš3 โˆ—2.97โ€“ 2.10
= 3.04 m
โˆด d = 3.04 m
9) Right of way (ROY) = 2*CL + b
= 2* 2.97 + 2.22 = 8.16 m
Roll no. PUR072BEL005
Therefore, height of tower = h +2 y + d
= Hg + s + 2y + d where, Hg = minimum ground clearance
= 6.1 + s + 2 * 3.84 + 3.04 And s = sag of the conductor
= (16.82 + s) m
Selection criteria for number of earth wire
Voltage levels No. of circuits (Nc) Number of earth wire (Ne)
66 kV *(1/2) 1
132 kV 1
2
1
2
220 kV 1
2
1
2
โ‰ฅ 400 kV 2
*(1/2)
2
2
From above table, for double circuit of 132 kV, number of earth wire is 2
Air Clearance from Earthed Object (a) = 1.48 m
Length of String (l)= 2.10 m
Cross arm Length (CL) = 2.97 m
Width of Tower (b) = 2.22 m
Vertical Distance between two adjacent line conductors (y) = 3.84 m
Height of Earth Wire from Top Most Cross arm (d) = 3.04 m
Horizontal Distance between Two adj. line conductors
Or Right of Way (2Cl+b) = 8.16 m
Thus, number of earth wire(Ne) =2 is selected.
Roll no. PUR072BEL005
Number of Disc Selection
For all the calculations of number of insulator discs of size 254 *154 mm, we considered
following value of different factors:
FOWR= Flashover Withstand Ratio = 1.15
NACF = Non-Standard Atmospheric Condition factor =1.1
FS = Factor of Safety=1.2
Here, System Voltage = 132 kV and Max. System voltage = 145.2 kV
a. 1 minute Dry Test
Equivalent Flashover Voltage = 1 min. dry withstand voltage * FOWR * NACF * FS
Where, 1 min. dry withstand voltage is given in table A-2 for 145.2 kV system
voltage
= 265 kV
โˆดEquivalent FOV = 265 * 1.15 * 1.1 * 1.2
= 402.27 kV
Nearest higher 1 min. dry FOV voltage (in table A-3) = 435 kV
From table A-3, for 1 minute dry FOV = 435 kV, no. of discs = 7
โˆดNo. of disc = Nd1 = 7
b. 1 minute Wet Test
Equivalent FOV = 1 min. wet withstand voltage * FOWR * NACF * F S
Where, 1 min. wet withstand voltage is given in table A-2 for 145.2 system voltage
= 230 kV
โˆดEquivalent FOV = 230 * 1.15 * 1.1 * 1.2 = 349.14 kV
Nearest higher 1 min. wet FOV voltage (in table A-3) = 370 kV.
From table A-3, for 1 minute dry FOV = 370 kV, no. of discs = 9
โˆด No. of discs = Nd2 = 9
c. Temporary Over Voltage Test
Temporary o/v = EF * maximum system voltage
Where, EF = Earthing Factor = 0.8 (for Nepal)
โˆดTemporary o/v = 0.8 * 145.2 = 116.16 kV
Equivalent FOV = Temporary o/v * โˆš2 * FOWR * NACF * FS
= 116.16 * โˆš2 * 1.15 * 1.1 * 1.2
Roll no. PUR072BEL005
= 249.3695 kV
Wet season is the worst condition.
Thus, nearest higher FOV (from table A-3, 1 min. wet FOV) =250 kV
โˆดNo. of discs = Nd3 = 6
d. Switching Over Voltage Test
Switching o/v = Maximum per phase peak voltage * SSR
Where, SSR = Switching Surge Ratio = 2.8
โˆดSwitching o/v = 132 *
โˆš2
โˆš3
* 1.1* 2.8 = 331.49 kV
Equivalent s/w FOV = Switching o/v * SIR * FOWR * NACF * FS
Where, SIR = Switching to Impulse Ratio = 1.2
Equivalent FOV = 331.49 * 1.2 * 1.15 * 1.1 * 1.2
= 603.8 kV
The nearest higher voltage (in table A-3, impulse FOV) = 610 kV
โˆดNo. of discs = Nd4 = 6
e. Lightening Over Voltage Test
Equivalent impulse withstand o/v = 550 kV (from table A-2) for 145.2 kV
Equivalent impulse FOV = Equivalent impulse withstand voltage * FWR * NAC * FS
= 550 * 1.15 * 1.1 * 1.2
= 834.9 kV
The nearest higher voltage (in table A-3, impulse FOV) = 860 kV
โˆดNo. of discs = Nd5 = 9
S.N. Test No. of Discs
a. 1 min. Dry Test 7
b. 1 min. Wet Test 9
c. Temporary O/V Test 6
d. Switching O/V Test 6
e. Lightening O/V Test 9
From the table, it is seen that the minimum no. of disc required to withstand all tests is 9.
โˆด The No. of discs required for our design (Nd) is 9.
Roll no. PUR072BEL005
Conductor Selection
I. Continuous Current Carrying Capability/
P = 200 MW, Nc = 2, VL = 132 kV, Cosฯ† = 0.96
Line current is calculated as:
Line current (IL) =
๏ฆcos**3
/
llV
NcP
=
200โˆ—10^6/2
โˆš3โˆ—132โˆ—10^3โˆ—0.96
= 455.611 A
Comparing this value of the current with the current carrying capacity from the given
standard ASCR conductor table, the conductor โ€œLYNXโ€ (with current carrying
Capacity 475 A) is selected.
II. Transmission Efficiency Criterion
For LYNX conductor, From ASCR conductor table,
Resistance at 200
C (R20) = 0.15890 ฮ/Km
Coefficient of Resistivity (ฮฑ20) =0.004 /0
C (For Aluminum)
So Resistance at 650
C (R65) = R20 (1 +ฮฑ20(65-20))
= 0.15890(1+0.004*45)
= 0.187502 ฮ/Km
Total Resistance of the line for 95 Km = 18.7502 ฮ
โˆดTotal Power Loss (PL) = 3* IL
2
*R65 * Nc
= 3* 455.6112
*18.7502*2
= 23.3532 MW
โˆดษณ = 1-
๐‘ƒ๐‘™
๐‘ƒ
= 1-
25.3532
200
= 88.3234 %
This efficiency is <94%. So this conductor cannot be used. To get the higher
efficiency we proceed in the same way and calculate efficiency for SHEEP as shown
below.
For SHEEP conductor, From ASCR conductor table,
Resistance at 200
C (R20) = 0.07771 ฮ/Km
Coefficient of Resistivity (ฮฑ20) =0.004 /0
C (For Aluminum)
So Resistance at 650
C (R65) = R20 (1 +ฮฑ20(65-20))
Roll no. PUR072BEL005
= 0.07771 (1+0.004*45)
= 0.0916978 ฮ/Km
Total Resistance of the line for 95 Km = 9.16978 ฮ
โˆดTotal Power Loss (PL) = 3* IL
2
*R65 * Nc
= 3* 333.792
*9.16978*2
= 11.421 MW
โˆดษณ = 1-
๐‘ƒ๐‘™
๐‘ƒ
= 1 โ€“
11.421
200
= 94.2895%
Thus, this efficiency is >94% (i.e. 94.21%). So we select the conductor BEAR.
Conductor R20(ฮ/Km) R65 (ฮ/Km) Ploss (MW) ษณ (%) Remarks
LYNX 0.15890 0.187502 23.3532 88.3234 <94%
SHEEP 0.07771 0.0916978 11.421 94.2895 >94%
III. Voltage Regulation Criterion
The SHEEP conductor has 37 strands (30 Aluminum strands and 7 steel strands).
Diameter of conductor (D) =27.93mm
Radius of the conductor(R) =13.965mm
GMR for inductance (rโ€™) =0.768R
=0.768 * 13.965
=10.72512mm = 1.073 cm
GMR for capacitance (r) = R = 13.965 mm.
= 1.3965 cm
Here,
Vertical distance between two conductors (y) = 3.84m
Cross arm length (CL) = 2.97 m
Width of tower (b) = 2.22 m
Horizontal distance between two conductors (2*CL + b) = 8.16 m (i.e. ROY)
Roll no. PUR072BEL005
Fig. Double Circuit Line Representation
i.e. Dacหˆ =8.16 m = Dcaโ€™= Dbbหˆ = Daโ€™c = Dbโ€™b = Dcโ€™a
Dabโ€™= โˆš(๐ท๐‘Ž๐‘โ€ฒ)2 + (๐‘ฆ)2= โˆš8.162 + 3.842 = 9.018 m=Dbaโ€™=Dbcโ€™=Dcbโ€™
Dca = 2*3.84 = 7.68 m= Dcโ€™aโ€™
Dab=3.84 m= Dbc= Dbโ€™aโ€™= Dbโ€™cโ€™
Daaหˆ=โˆš(๐ท๐‘Ž๐‘โ€ฒ)2 + (2๐‘ฆ)2= โˆš8.162 + (2 โˆ— 3.84)2 = 11.2 m = Dccหˆ
For GMD Calculation:
GMD = (Dab .Dab' . Da'b .Da'b' .Dbc .Dbc'.Db'c .Db'c' .Dca .Dca' . Dc'a .Dc'a')1/12
= ( 3.84*9.018*9.018*3.84*3.84*9.018*9.018*3.84*7.68*8.16*8.16*7.68)1/12
โˆดGMD=6.496 m
For GMR Calculation:
Here, for GMRL, rโ€™=0.768R = 0.9 cm
Dsa= โˆš๐ท๐‘Ž๐‘Ž โˆ— ๐ท๐‘Ž๐‘Žโ€ฒ โˆ— ๐ท๐‘Žโ€ฒ ๐‘Žโ€ฒ โˆ— ๐ท๐‘Žโ€ฒ๐‘Ž
4
=โˆš๐ท ๐‘Ž๐‘Žโ€ฒ โˆ— ๐‘Ÿโ€ฒ = โˆš11.2 โˆ— 9 โˆ— 10^(โˆ’3) = 0.3174m=31.74 cm
Dsb = โˆš๐ท๐‘๐‘ โˆ— ๐ท๐‘๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ ๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ๐‘
4
= โˆš๐ท ๐‘๐‘โ€ฒ โˆ— ๐‘Ÿโ€ฒ = โˆš8.16 โˆ— 9 โˆ— 10^(โˆ’3) =0.2709m=27.09 cm
Dsc = โˆš๐ท๐‘๐‘ โˆ— ๐ท๐‘๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ ๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ๐‘
4
= โˆš๐ท๐‘๐‘โ€ฒ โˆ— ๐‘Ÿโ€ฒ = โˆš11.2 โˆ— 9 โˆ— 10^(โˆ’3) = 0.3174m= 31.74 cm
โˆดGMRL =โˆš๐ท๐‘ ๐‘Ž โˆ— ๐ท๐‘ ๐‘ โˆ— ๐ท๐‘ ๐‘
3
=โˆš31.74 โˆ— 27.09 โˆ— 31.74
3
= 30.107 cm
Roll no. PUR072BEL005
For GMRc,
Here, for GMRC, r=R=11.725 mm=11.725*10-3
m
Dsa= โˆš๐ท๐‘Ž๐‘Ž โˆ— ๐ท๐‘Ž๐‘Žโ€ฒ โˆ— ๐ท๐‘Žโ€ฒ ๐‘Žโ€ฒ โˆ— ๐ท๐‘Žโ€ฒ๐‘Ž
4
=โˆš ๐ท ๐‘Ž๐‘Žโ€ฒ โˆ— ๐‘Ÿ
= โˆš11.2 โˆ— 11.725 โˆ— 10^(โˆ’3)
=0.3623 m =36.23cm
Dsb = โˆš๐ท๐‘๐‘ โˆ— ๐ท๐‘๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ ๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ๐‘
4
= โˆš ๐ท ๐‘๐‘โ€ฒ โˆ— ๐‘Ÿ
= โˆš8.16 โˆ— 11.725 โˆ— 10โˆ’3
=0.3093m =30.93 cm
Dsc = โˆš๐ท๐‘๐‘ โˆ— ๐ท๐‘๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ ๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ๐‘
4
= โˆš ๐ท๐‘๐‘โ€ฒ โˆ— ๐‘Ÿ
= โˆš11.2 โˆ— 11.725 โˆ— 10^(โˆ’3)
=0.3623m=36.23cm
โˆด GMRC=โˆš ๐ท๐‘ ๐‘Ž โˆ— ๐ท๐‘ ๐‘ โˆ— ๐ท๐‘ ๐‘
3
=โˆš36.23 โˆ— 30.93 โˆ— 36.23
3
= 34.36 cm
Now, Inductance per unit length (L) = 2 โˆ— 10โˆ’7
โˆ— ln (
๐บ๐‘€๐ท
๐บ๐‘€๐‘… ๐ฟ
) H/m
= 2 โˆ— 10โˆ’7
โˆ— ln (
6.496โˆ—100
30.107
)
= 6.143*10-7
H/m = 6.143*10-7
*103
*103
=0.6143 mH/km
โˆดCapacitance per unit Length(C) =
2๐œ‹๐œ€
ln(
๐บ๐‘€๐ท
๐บ๐‘€๐‘…๐‘
)
โˆ— 1000 ๐น/๐‘˜๐‘š [ฦ0 = 8.85*10-12
F/m]
=
2๐œ‹โˆ—8.85โˆ—10โˆ’12
๐‘™๐‘›(
6.496โˆ—100
34.36
)
โˆ— 1000 = 1.891*10-8
F/km
โˆดCapacitance per unit length = 1.891*10โˆ’8
F/km
Resistance of whole length = 12.255 ฮ
โˆด Resistance per unit length = 0.12255 ฮ/Km
Impedance of the line (Z) = R65 + j XL =R+j(2ฯ€*f*L )
= (0.12255+j*(2ฯ€*50*6.143*10-4
) ) [f=50 Hz]
= (0.12255 +j 0.1929) ฮฉ/km
=(0.12255 +j 0.1929) * 100 ฮฉ
=12.255+j 18.333 ฮฉ
Roll no. PUR072BEL005
= 22.051โˆ ๐Ÿ“๐Ÿ”. ๐Ÿ๐Ÿ‘ 0
ฮฉ
Susceptance of the line (Y) = j w C = j*2ฯ€*50*1.891 *10-8
*95= j 5.643 *10-4
Siemens
= 5.643*10-4
โˆ 900
Siemens
Calculation of ABCD parameters
Since 100 km line length lies on medium
Transmission line (i.e. 50 โ€“200 km),
Calculation of parameters is done
Using ฯ€-model.
Fig: Nominal ฯ€- model of T.L.
๐€ = ๐ƒ = 1 +
YZ
2
= 1 +
5.643 โˆ— 10โˆ’4
โˆ 900
โˆ— 22.051โˆ 56.230
2
= ๐ŸŽ. ๐Ÿ—๐Ÿ—๐Ÿ’โˆ ๐ŸŽ. ๐Ÿ๐Ÿ—๐Ÿ—ยฐ = ๐ŸŽ. ๐Ÿ—๐Ÿ—๐Ÿ’ + ๐ฃ๐Ÿ‘. ๐Ÿ’๐Ÿ“๐Ÿ–
๐ = Z =22.051 โˆ  56.23
๐‚ = Y (1 +
YZ
4
) = 5.643 โˆ— 10โˆ’4
โˆ 900
(1 +
5.643 โˆ— 10โˆ’4
โˆ 900
โˆ— 22.051โˆ 56.230
4
)
= โˆ’๐Ÿ—. ๐Ÿ•๐Ÿ“๐Ÿ• โˆ— ๐Ÿ๐ŸŽโˆ’๐Ÿ•
+ ๐ฃ๐Ÿ“. ๐Ÿ”๐Ÿ๐Ÿ– โˆ— ๐Ÿ๐ŸŽโˆ’๐Ÿ’
= ๐Ÿ“. ๐Ÿ”๐Ÿ๐Ÿ– โˆ— ๐Ÿ๐ŸŽโˆ’๐Ÿ’
โˆ ๐Ÿ—๐ŸŽ. ๐ŸŽ๐Ÿ—ยฐ
โˆด| ๐ผ ๐‘…| @ full load = 333.79 A
Cos ฮฆ = 0.95(lag)
โˆดฮฆ = -18.190
Then, IR =333.79โˆ -18.19 A
โˆดVR per phase @ full load =
132
โˆš3
โˆ— ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ โˆ  00
= ( ๐Ÿ•๐Ÿ”๐Ÿ๐Ÿ๐ŸŽโˆ ๐ŸŽยฐ)V
โˆด|VR| per phase @ full load = 76210 V = 76.21 kV
Therefore, Sending end voltage is given by
โˆด VS (per phase) @ full load = A VR + B IR
=(0.994โˆ 0.199ยฐ)*( 76210โˆ 0ยฐ) +(22.051 โˆ  56.23)*333.79โˆ โˆ’18.190
=
๐Ÿ–๐Ÿ๐Ÿ“๐Ÿ’๐Ÿ—. ๐Ÿ๐Ÿ— + ๐’‹ ๐Ÿ’๐Ÿ•๐Ÿ—๐Ÿ–. ๐Ÿ”๐Ÿ”
VS VR
IR
Y/2
ZIS
Y/2
2
Roll no. PUR072BEL005
= 81690.25โˆ 3.36 V = 81.69 โˆ  3.36 kV
Hence, |VR| per phase @ no load = |
๐‘‰๐‘  @ ๐‘“๐‘ข๐‘™๐‘™ ๐‘™๐‘œ๐‘Ž๐‘‘
๐ด
| = |
81.69
0.994
| = 82.18 kV
โˆดVoltage Regulation (V.R.) =
| ๐‘‰๐‘Ÿ@ ๐‘›๐‘œ ๐‘™๐‘œ๐‘Ž๐‘‘|โˆ’|๐‘‰๐‘Ÿ @ ๐‘“๐‘ข๐‘™๐‘™ ๐‘™๐‘œ๐‘Ž๐‘‘|
|๐‘‰๐‘Ÿ @ ๐‘“๐‘ข๐‘™๐‘™ ๐‘™๐‘œ๐‘Ž๐‘‘|
=
82.18โˆ’76.21
76.21
= 7.83 %
Since calculated voltage regulation < 12 %, the conductor SHEEP satisfies voltage regulation
criterion.
IV. Corona Inception Voltage Criterion
For BEER conductor,
Maximum system voltage = 132 * 1.1 = 145.2 kV (rms)
Corona inception voltage (Vci) = โˆš3 โˆ— Air dielectric strength * GMRC * m * ฮด * ๐‘™๐‘› (
๐บ๐‘€๐ท
๐บ๐‘€๐‘…๐‘
)
Where, Air dielectric strength = 21.21 kV/ cm (rms)
GMRc = 34.36 cm
GMD = 649.6 cm
m = Roughness factor = 0.9
ฮด = Relative density of air = 0.95
โˆดVci= โˆš3 โˆ— 21.21 * 34.36 * 0.9 * 0.95 * ๐‘™๐‘› (
649.6
34.36
)= 3170.909 kV
Since Vci> Maximum system voltage (145.2 kV), there is no corona effect on BEER
conductor.
So, Corona Inception Voltage criterion is satisfied and all the technical criteria is met by
BEER conductor.
Hence the best five conductors which satisfy all the criteria are:
Thus, the conductor SHEEP can be used for our design.
1. SHEEP 2. DEER 3. ZEBRA
4. ELK 5. MOOSE
Roll no. PUR072BEL005
Tension Calculation for Different Conductors
1. Toughest condition -T1 tension and Sag is minimum (Dmin).
- Wt. of conductor (w1)
2. Normal Operating Condition (Stringing Condition) โ€“ T2 tension and S2 sag
- Wt. of conductor (w2)
3. Easiest condition โ€“ T3 tension and Sag is maximum (Dmax).
- Wt. of conductor (w3)
Let wc = weight of conductor per unit length
ww = weight per unit length due to wind
wice= weight per unit length due to ice
โˆด Weight during toughest condition =
w1 = โˆš(๐‘ค๐‘ + ๐‘ค๐‘–๐‘๐‘’)2 + ๐‘ค ๐‘ค
2
Calculation of Tension @ toughest condition (T1)
T1โ‰ค
๐‘ˆ๐‘‡๐‘†
๐น๐‘†
where, UTS = Ultimate Tensile Strength of the conductor
FS = Factor of safety = 2
Calculation of Tension at Normal condition (T2)
T2 is given by stringing equation
T2
2
(T2 + k1) โ€“ k2 = 0
Where,
k1 = -๐‘‡1 + ฮฑ (ฮธ2 โ€“ ฮธ1) A ฯต +
๐‘ค1
2 ๐‘™2
24 ๐‘‡1
2 Aฯต
k2 =
๐‘ค2
2 ๐‘™2
24
Aฯต
ฯต= Modulus of Elasticity
ฮฑ= Coefficient of linear expansion
A = Cross-section area of conductor
ฮธ2 = Temperature at normal condition = 270
C
ฮธ1 = Temperature at toughest condition = 00
C
w1 = per unit length conductor weight @ toughest condition
w2 = per unit length conductor weight @ stringing condition
Calculation of Tension @ Easiest condition (T3)
wc + wice
ww
w1
Roll no. PUR072BEL005
T3 is given by Stringing equation
T3
2
(T3 + k1โ€™) โ€“ k2โ€™= 0
Where,
k1โ€™ = -T2 + ฮฑ (ฮธ3 โ€“ ฮธ2) A ฯต +
๐‘ค1
2 ๐‘™2
24 ๐‘‡2
2 Aฯต
k2โ€™ =
๐‘ค2
2 ๐‘™2
24
Aฯต = k2
ฮธ3 = Temperature @ easiest condition = 650
C
Now, we perform tension calculation for conductors โ€œSHEEP,DEER,ZEBRA,ELK,MOOSEโ€
with Span length 250 m, 275 m, 300 m, 325 m, and 350 m. The Tensions for Toughest, Stringing
(Normal) and Easiest condition are calculated and tabulated below.
Sample Calculation
For SHEEP Conductor
Area of conductor (A) = 462.60 mm2
Coefficient of linear expansion (ฮฑ) = 17.73*10-6
/0
C
Modulus of Elasticity (ฮต) = 0.789*106
kg/cm2
Ultimate Tensile Strength (UTS) = 15910 kg
Wt. of conductor per unit length (wc) = 1726 kg/km
Wind Pressure (wp) = 100 kg/m2
Conductor diameter (d) = 27.93 mm
Thickness of ice (t) = 10 mm = 0.01 m
โ€ซุžโ€ฌWt due to wind (ww) per km = (wp*1000)*(d*2/3) kg/km
= 100*1000*27.93*10-3
*2/3
= 1862kg/km
Wt due to ice loading (wi) = ฯ€ t (d+t) ฯice *1000 kg/km
= ฯ€ * 0.01 (0.02345+0.01)* 950 *1000
= 998.31 kg/km
โ€ซุžโ€ฌWt. @ Toughest condition (w1)= โˆš(๐‘ค๐‘ + ๐‘ค๐‘–)2 + ๐‘ค ๐‘ค
2
= โˆš(17262 + 18262
= 25838.921 kg/km
โ€ซุžโ€ฌ Wt. @ Stringing Condition (w2) = wc = 1726 kg/km
โ€ซุžโ€ฌWt. @ Easiest Condition (w3) = wc = 1726 kg/ km
Roll no. PUR072BEL005
Temperature @ Toughest condition (ษต1) = 00
C
Temperature @ Normal Condition (ษต2) = 270
C
Temperature @ Easiest Condition (ษต3) = 650
C
Calculation of T1
T1 =
๐‘ˆ๐‘‡๐‘†
๐น๐‘†
=
15910
2
= 7955kg ( since, T1=110.9kN=11316.3kg)
Calculation of T2
k1 = -T1 + ฮฑ (ฮธ2 โ€“ ฮธ1) A ฯต +
๐‘ค12 ๐‘™2
24 ๐‘‡12 Aฯต
k2 =
๐‘ค22 ๐‘™2
24
Aฯต
From stringing equation,
T2
2
(T2 + k1) โ€“ k2 = 0
or, T2
3
+ k1 T2
2
โ€“ k2 = 0
or, T2
3
-5239.54 T2
2
โ€“ 2.831*1010
= 0
โˆดT2= 6020.697 kg
Calculation of T3
k1โ€™ = -T2 + ฮฑ (ฮธ3 โ€“ ฮธ2) A ฯต +
๐‘ค12 ๐‘™2
24 ๐‘‡22 Aฯต
= -1871.33
k2โ€™ = k2 = 2.8316*1010
Roll no. PUR072BEL005
From Stringโ€™s equation, T3
2
(T3 + k1โ€™) โ€“ k2โ€™ = 0
or,T3
3
+k1โ€™T3
2
โ€“ k2โ€™ = 0
or,T3
3
โ€“ 2.831*1010
=0
or, T3 = 3815.932 kg
Hence, five best conductors have been chosen. The tension due to these five different conductors
for different span length from 250m to 350m (step of 25m) are shown in the following tables :
Roll no. PUR072BEL005
Sag and Tower Height Calculation
The maximum sag between two towers is given by
Dmax =
๐‘ค3๐‘™๐‘  ๐‘2
8๐‘‡3
Where, w3= weight of conductor per unit length @ easiest condition.
Lsp = Span length
T3 = Tension @ easiest condition.
Minimum ground clearance = hg =
( ๐‘‰๐‘ ๐‘š๐‘Ž๐‘ฅโˆ’33)
33
+ 17 ๐‘“๐‘’๐‘’๐‘ก
Where, Vsmax= Maximum system voltage.
Now,
Height of lowest conductor = h1 = hg + Dmax
Height of middle conductor = h2 = h1 + y [For Nc=2]
Height of topmost conductor = h3 = h2 + y
Height of tower = ht = h3 + dโ€™
From air clearance section, we have
dโ€™ =distance between earth wire and topmost power conductor = 3.04 m
y= vertical distance between two conductors = 3.84m
Roll no. PUR072BEL005
Vsmax= 132*1.1 =145.2 kV
hg=
(145.2โˆ’33)
33
+ 17 ๐‘“๐‘’๐‘’๐‘ก = 20.4 ft. = 6.21792 m
Sample Calculation
For SHEEP Conductor
w3 = wt. per unit length @ easiest condition = 1219 kg/km. (=w2 in table 1.1)
lsp= 250m = 0.25 km (assume)
T3 = 1684.78 kg (from table 1.1)
= 3.533m
โˆด h1 = hg + Dmax = 6.21792+3.533= 9.75092 m
h2 = h1 + y = 9.75092+2.00967 = 11.76059m
h3 = h2 + y = 13.77026 m
ht = h3+dโ€™ = 19.2687 m
Similarly, the maximum sag, h1, h2, h3 and the total height of the tower for different span lengths
for five best conductors are calculated and presented in the table shown here:
Roll no. PUR072BEL005
Earth Wire Selection
From earth wire table, earth wire GUINEA is chosen as follows:
No of strands = 19
Diameter of a strand = 2.92mm
Weight of conductor = 590kg/km
Diameter of earth wire (de) = 14.60mm
Area of Conductor = 127.20mm2
Ultimate tensile strength = 6664 kg
Hence, maximum tension (T1e) = 3332 kg
Roll no. PUR072BEL005
Bending Moment and Tower Weight Calculation
For design purpose, we consider 80% of the towers are of class A, 15% of the towers are of class
B and 5% of the towers are of class C.
The bending moment acting on the tower are due to the followings:
๏ƒ˜ wind force on power conductor (BMPw)
๏ƒ˜ wind force on earth wire (BMEw)
๏ƒ˜ Turning of power conductor (BMPT)
๏ƒ˜ Turning of earth conductor (BMET).
Sample Calculation
For SHEEP and span length (lsp) = 250m
a. BM due to power conductor
BM due to wind force (BMPw)
= Fwp * (h1+h2+h3)*Nc
Where,
Fwp = Wind force =wp * dp * lsp * 2/3 wp =
Wind pressure = 100kg/m2
dp = diameter of
power conductor = 27.93 mm = 27.93*10-3
m
h1 = height of bottom most conductor =
9.75162m (table 2.1) h2 = height of middle
conductor = 11.76129m (table 2.1) h3 =
height of top most conductor = 13.77096 m
(table 2.1) Nc = No. of circuits = 1
lsp = span length = 250m
โˆด BMPw = wp* dp*lsp* 2/3* (h1+h2+h3)*Nc
= 100*27.93*10-3
*250*2/3*(9.75162 +11.76129 +13.77096)*2
= 32847.32787 kgm
Roll no. PUR072BEL005
BM due to turning (BMPt)
= 2*T1*(0.8 sin10
+0.15 sin7.50
+ 0.05 sin 150
)*(h1+h2+h3)*Nc
Where,
T1 = Tension @ toughest condition = 7955kg (table 1.1)
โˆด BMPt = 2*7955*(0.8 sin10
+0.15 sin7.50
+ 0.05 sin 150
)* (9.75162
+11.76129 +13.77096)*2
= 15910* 0.046482* 35.28177*2 = 52183.7574 kgm.
b. BM due to earth wire
BM due to wind force (BMEw)
= Fwe * ht * Ne
= wp*de*lsp*2/3*ht*Ne
Where,
Fwe = Wind force on earth conductor Wp = wind pressure =
100kg/m2
de = Diameter of earth conductor = 14.60 mm =
14.60*10-3
m (for GUINEA) lsp = Span length = 250m
ht = tower height = 19.26933m (from table 2.1)
Ne = No. of earth wire = 1
โˆด BMEw = 100*14.60* 10-3
*250*2/3*19.26933*2
= 93774.434 kgm
BM due to turning (BMEt)
BMEt = 2 T1e*(0.8 sin10
+0.15 sin7.50
+ 0.05 sin 150
)*ht*Ne
Where T1e = Tension on earth conductor @ toughest condition
T1e = UTS of GUINEA /2 = 6664/2 = 3332 kg
โˆด BMEt = 2*3332*(0.8 sin10
+0.15 sin7.50
+ 0.05 sin 150
)*19.26933*2
= 11937.193 kgm
โˆด Total Bending Moment (TBM) = BMPw+BMPt+BMEw+BMEt
= 106345.7123 kgm โˆด Tower weight (TW)
Where FS = Factor of Safety = 2
Roll no. PUR072BEL005
โˆด TW = 0.000631*19.26933*โˆš๐Ÿ๐ŸŽ๐Ÿ”๐Ÿ‘๐Ÿ’๐Ÿ“. ๐Ÿ•๐Ÿ๐Ÿ๐Ÿ‘ โˆ— ๐Ÿ = 5.60734 tonnes
Similarly, we can calculate the total bending moment and tower weight for different
conductors at different span length:
Roll no. PUR072BEL005
Tower Cost per Unit Length Calculation
Assumptions:
Cost of steel = Rs 1, 50,000 per tonnes
No. of towers = + 1 = Nt [Lt = Total Length and lsp = Span length]
โˆดCost of tower per unit length = Cost per tower * Nt /Lt
Sample Calculation
For SHEEP and for span length = 250m lsp = 250m
Lt = 100 km
Tower weight (TW) = 5.60734 tonnes (from table 3.1)
Cost per tower = cost per tonne โˆ— weight of tower
= 1, 50,000 *5.60734
=Rs. 841101
Cost of tower per unit length = Cost per tower * Nt / Lt
= 841101*401/100
= Rs. 3372815.01/km
Similarly we can find tower cost/km for 5 different conductors for their different span length. The
tower cost per unit length is shown in the following table:
Roll no. PUR072BEL005
Hence, the tower cost per unit length is minimum for SHEEP conductor with span
length 275 m.
Roll no. PUR072BEL005
Most Economical Span and Conductor Selection:
Assumption: Cost of Al/tonnes= Rs 20105
Cost of Steel/ tonnes = Rs 150000
Load Factor (LF) = 0.5
Loss of Load Factor (LLF) = k1*(LF)+k2*(LF)2
k1 = 0.2
And k2=0.8 โˆด LLF = 0.5 * 0.2 + 0.52
* 0.8 = 0.3 [Note:
k1+k2=1]
Per unit energy cost = Rs 7.50 /-
Life span (n) = 25 years Now, Rate of interest (i) = 10%
โˆด Annuity factor (
Annual Capital cost = ฯ’*capital cost per km
Capital cost per km = Tower cost per km (from table 4) + power conductor
cost per km
Total cost of power conductor per km = (cost of Al/km + cost of steel/km)
* Total no. of conductor
Cost of Al/km = Weight of Al/km * cost of Al/tons
Cost of Steel/km = Weight of Steel/km * cost of Steel / tons
Cost of energy loss/km = PL*LLF*time*Rate of cost
PL = Power loss = IL
2
* r65 * Total no. of power conductor
Total annual cost per km = Annual energy loss cost + Annual capital cost
Sample Calculation:
For SHEEP conductor
From table (4.1), the economical span length = 275 m
From ACSR table, Weight of Aluminum = 1036 kg/km
Weight of Steel = 690 kg/km
Total cost of power conductor per km = No. of conductors*cost of power conductor
per km/conductor
= 6* (20105*1036+150000*690)*10-3
= 745972.68
From above calculation,
Tower cost per km = Rs. 3343801.241 (for span length of 275m from table 4.1)
Roll no. PUR072BEL005
โˆด Capital cost per km = Tower cost per km + Power conductor cost per km
= Rs (3343801.241+ 745972.68)
= Rs 4089773.921
Annual capital cost = ฯ’ * Capital cost per km
= 0.110168 * 4089773.921
= Rs 450562.2133per km
Power loss per Km (PL) = = IL
2
R65' * Total number of conductors
IL = 455.611 A [From conductor selection section]
R65 = 0.0916978 ฮ/Km [From Voltage Regulation section in conductor selection]
Total number of conductors= 6
โˆด PL = 455.611 2
*0.0916978 *6 = 114208.537 W/km = 114.2085 kW/km
Annual Cost of energy loss per km = PL * LLF * time * cost per unit energy
= 114.2085 * 0.3*(365*24)*7.50
= Rs. 2251049.535/-
Total annual cost per km = Annual cost of energy loss per km + Annual capital cost
= Rs 2251049.535+ Rs 450562.2133
= Rs 2701611.748/-
Similarly,
We can calculate the Total annual cost per km for each conductor with their
respective economic span length. The tabulated form of the calculation is shown
below:
Hence,
From above table, it can be seen that MOOSE is the most economical
conductor with span length of 275m.
Roll no. PUR072BEL005
Transmission line Characteristics of the conductor MOOSE
A. Electrical Characteristics
The MOOSE conductor has 61 strands with 7 Steel strands and 54 Aluminum
strands.
Diameter of each strands = 3.53mm
Diameter of conductor (d) = 31.77 mm = 3.177 cm
Radius of conductor = 15.885 mm = 1.588 cm
GMR for inductance (GMRL) = 33.9041 cm
GMR for capacitance (GMRc) = 38.6856 cm
GMD for Double circuit = 686.5811 cm
Resistance of the whole length(R) = 9.16978 ฮฉ@ 650
C
Inductance of Whole length (L) = 0.060164 H
Capacitance of whole Length(C) = 1.9333ฮผF
Impedance of the Line (Z) = 9.1678 +j 18.901ฮฉ
Susceptance of the Line (Y) = j0.6074*10-3
Siemens
Calculation of A, B, C, D parameters
A = 1+YZ/2 = 0.9943 < 0.16045ยฐ
B = Z (1+YZ/4) =21 . 0071 < 64.125ยฐ
C = Y = 0.000606 < 90.08ยฐ
D = A = 0.9943 < 0.16045ยฐ
Sending end Voltage (Vs) = A*Vr+B*Ir
= 82.5209<5.08190
kV (per phase)
โˆด Voltage Regulation = (|Vs|/A -|Vr|)/|Vr| = ((82.5209/0.9943)- 76.21)/76.21
= 8.9%<12%
Roll no. PUR072BEL005
Corona Inception Voltage Criterion
Corona Inception voltage (Vci) =21.21*GMR*m*ฮด*ln(GMD/GMR)
โˆดVci =โˆš3 * 21.21 * 38.6856*0.9*0.95* ln (686.5811
/38.6856)
Vci = 3494.9778 kV>Vsmax
B. Mechanical characteristics:
Length of span =275 m
Tension at toughest condition = T1 = 8125 kg
Tension at stringing condition = T2= 5855.13 kg
Tension at easiest condition =T3= 3616.56 kg
Tower Heights:
H1 = 11.45084 m
H2 = 13.46051 m
H3 = 15.47018 m
Ht = 20.9685 m
Maximum sag (Dmax) = 8.74 m
Bending Moment on Earth wire due to Wind Force (BMEw) = 12797.919 kgm
Bending Moment on Earth wire due to Turning (BMET) = 12990.2765 kgm
Bending Moment on Power Conductor due to wind force (BMPw) = 47040.4545
kgm
Bending Moment on Power Conductor due to turning (BMPT) = 61002.9773 kgm
Total Bending Moment (TBM) = 133831.63 kgm
Tower Weight = 6.8453 tonnes
Tower Cost = 6.8453*(Rs 150000)= Rs 1026795
No. of Towers (Nt) = 365
Capital Cost per km = Rs. 3747801.75
Total Annual cost per km = Rs. 2092785.581
Roll no. PUR072BEL005

More Related Content

What's hot

33kv substation
33kv substation33kv substation
33kv substation
Abhishek Dawachya
ย 
Sag and tension
Sag and tensionSag and tension
Sag and tension
rajendrachoudhary123
ย 
Supports of overhead line
Supports of overhead lineSupports of overhead line
Supports of overhead line
Shreyansha Sonwane
ย 
Chapter 4 mechanical design of transmission lines
Chapter 4  mechanical design of transmission linesChapter 4  mechanical design of transmission lines
Chapter 4 mechanical design of transmission lines
firaoltemesgen1
ย 
Chapter 2 transmission line parameters
Chapter 2  transmission line parametersChapter 2  transmission line parameters
Chapter 2 transmission line parameters
firaoltemesgen1
ย 
PPt on 220 kV substation
PPt on 220 kV substationPPt on 220 kV substation
PPt on 220 kV substation
Ishank Ranjan
ย 
Equipments of power transmission
Equipments of power transmissionEquipments of power transmission
Equipments of power transmission
Rasika Ghongade
ย 
Gas insulated substation
Gas insulated substationGas insulated substation
Gas insulated substation
sharique_64
ย 
Presentation on 132/33 KVSubstation Training
Presentation on 132/33 KVSubstation Training Presentation on 132/33 KVSubstation Training
Presentation on 132/33 KVSubstation Training
Sakshi Rastogi
ย 
Selection of transmission voltage
Selection of transmission voltageSelection of transmission voltage
Selection of transmission voltage
Adani Institute of Infrastructure Engineering College
ย 
Presentation on Over-/under-voltage protection of electrical appliance
Presentation on Over-/under-voltage protection of electrical appliancePresentation on Over-/under-voltage protection of electrical appliance
Presentation on Over-/under-voltage protection of electrical appliance
Nishant Kumar
ย 
Distribution System
Distribution SystemDistribution System
Distribution System
Kupusaami Anbumani
ย 
PPT ON 220KV GSS
PPT ON 220KV GSSPPT ON 220KV GSS
PPT ON 220KV GSS
SIIT, Jaipur
ย 
220 kV GSS Mansarovar Jaipur (RVPNL) Training PPT SM54
220 kV GSS Mansarovar Jaipur (RVPNL) Training PPT SM54220 kV GSS Mansarovar Jaipur (RVPNL) Training PPT SM54
220 kV GSS Mansarovar Jaipur (RVPNL) Training PPT SM54
Subhash Mahla
ย 
Types of transmission lines
Types of transmission linesTypes of transmission lines
Types of transmission lines
Self-employed
ย 
Construction EHV Transmission Line
Construction EHV Transmission LineConstruction EHV Transmission Line
Construction EHV Transmission Line
SURESH GOPAL
ย 
Grid Sub-station & its Equipments
Grid Sub-station & its EquipmentsGrid Sub-station & its Equipments
Grid Sub-station & its Equipments
Rahul Mehra
ย 
Load flow studies 19
Load flow studies 19Load flow studies 19
Load flow studies 19
Asha Anu Kurian
ย 
Electric substation
Electric substation Electric substation
Electric substation
ANNU KUMAR
ย 
1.substation layouts
1.substation  layouts1.substation  layouts
1.substation layouts
ayyadurai SHANMUGAM
ย 

What's hot (20)

33kv substation
33kv substation33kv substation
33kv substation
ย 
Sag and tension
Sag and tensionSag and tension
Sag and tension
ย 
Supports of overhead line
Supports of overhead lineSupports of overhead line
Supports of overhead line
ย 
Chapter 4 mechanical design of transmission lines
Chapter 4  mechanical design of transmission linesChapter 4  mechanical design of transmission lines
Chapter 4 mechanical design of transmission lines
ย 
Chapter 2 transmission line parameters
Chapter 2  transmission line parametersChapter 2  transmission line parameters
Chapter 2 transmission line parameters
ย 
PPt on 220 kV substation
PPt on 220 kV substationPPt on 220 kV substation
PPt on 220 kV substation
ย 
Equipments of power transmission
Equipments of power transmissionEquipments of power transmission
Equipments of power transmission
ย 
Gas insulated substation
Gas insulated substationGas insulated substation
Gas insulated substation
ย 
Presentation on 132/33 KVSubstation Training
Presentation on 132/33 KVSubstation Training Presentation on 132/33 KVSubstation Training
Presentation on 132/33 KVSubstation Training
ย 
Selection of transmission voltage
Selection of transmission voltageSelection of transmission voltage
Selection of transmission voltage
ย 
Presentation on Over-/under-voltage protection of electrical appliance
Presentation on Over-/under-voltage protection of electrical appliancePresentation on Over-/under-voltage protection of electrical appliance
Presentation on Over-/under-voltage protection of electrical appliance
ย 
Distribution System
Distribution SystemDistribution System
Distribution System
ย 
PPT ON 220KV GSS
PPT ON 220KV GSSPPT ON 220KV GSS
PPT ON 220KV GSS
ย 
220 kV GSS Mansarovar Jaipur (RVPNL) Training PPT SM54
220 kV GSS Mansarovar Jaipur (RVPNL) Training PPT SM54220 kV GSS Mansarovar Jaipur (RVPNL) Training PPT SM54
220 kV GSS Mansarovar Jaipur (RVPNL) Training PPT SM54
ย 
Types of transmission lines
Types of transmission linesTypes of transmission lines
Types of transmission lines
ย 
Construction EHV Transmission Line
Construction EHV Transmission LineConstruction EHV Transmission Line
Construction EHV Transmission Line
ย 
Grid Sub-station & its Equipments
Grid Sub-station & its EquipmentsGrid Sub-station & its Equipments
Grid Sub-station & its Equipments
ย 
Load flow studies 19
Load flow studies 19Load flow studies 19
Load flow studies 19
ย 
Electric substation
Electric substation Electric substation
Electric substation
ย 
1.substation layouts
1.substation  layouts1.substation  layouts
1.substation layouts
ย 

Similar to Transmission and distribution system design

12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
Hossam Shafiq II
ย 
Main dimension & rotor design of squirrel cage Induction Motor.pdf
Main dimension & rotor design of squirrel cage Induction Motor.pdfMain dimension & rotor design of squirrel cage Induction Motor.pdf
Main dimension & rotor design of squirrel cage Induction Motor.pdf
MohammadAtaurRahmanA
ย 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Ansal Valappil
ย 
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
4bh7qsqvyb
ย 
Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )
Hamza Waheed
ย 
Electrical Machine design
Electrical Machine designElectrical Machine design
Electrical Machine design
AsifAdnanTajwer
ย 
Sm chapter33
Sm chapter33Sm chapter33
Sm chapter33
Juan Timoteo Cori
ย 
Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33
Carlo Magno
ย 
LED้›ปๆบๅ›ž่ทฏใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚ฌใ‚คใƒ‰ ้‡‘ๆฒขใƒ—ใƒฌใ‚ผใƒณ่ณ‡ๆ–™
LED้›ปๆบๅ›ž่ทฏใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚ฌใ‚คใƒ‰ ้‡‘ๆฒขใƒ—ใƒฌใ‚ผใƒณ่ณ‡ๆ–™LED้›ปๆบๅ›ž่ทฏใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚ฌใ‚คใƒ‰ ้‡‘ๆฒขใƒ—ใƒฌใ‚ผใƒณ่ณ‡ๆ–™
LED้›ปๆบๅ›ž่ทฏใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚ฌใ‚คใƒ‰ ้‡‘ๆฒขใƒ—ใƒฌใ‚ผใƒณ่ณ‡ๆ–™
Tsuyoshi Horigome
ย 
Sm chapter27
Sm chapter27Sm chapter27
Sm chapter27
Juan Timoteo Cori
ย 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27
Carlo Magno
ย 
First order active rc sections hw1
First order active rc sections hw1First order active rc sections hw1
First order active rc sections hw1
Hoopeer Hoopeer
ย 
Report
ReportReport
Report
Amir Dillawar
ย 
Unit5-KOM
Unit5-KOMUnit5-KOM
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
authelectroniccom
ย 
Wiring Design of KUET Auditorium Building
Wiring Design of KUET Auditorium BuildingWiring Design of KUET Auditorium Building
Wiring Design of KUET Auditorium Building
Md. Rayid Hasan Mojumder
ย 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
Hossam Shafiq II
ย 
132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdf132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdf
ssuser4d1f4f
ย 
Elecmachine
ElecmachineElecmachine
Elecmachine
Hassan Tirmizi
ย 
FINAL
FINALFINAL
FINAL
Aya Adel
ย 

Similar to Transmission and distribution system design (20)

12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
ย 
Main dimension & rotor design of squirrel cage Induction Motor.pdf
Main dimension & rotor design of squirrel cage Induction Motor.pdfMain dimension & rotor design of squirrel cage Induction Motor.pdf
Main dimension & rotor design of squirrel cage Induction Motor.pdf
ย 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
ย 
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
ย 
Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )
ย 
Electrical Machine design
Electrical Machine designElectrical Machine design
Electrical Machine design
ย 
Sm chapter33
Sm chapter33Sm chapter33
Sm chapter33
ย 
Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33
ย 
LED้›ปๆบๅ›ž่ทฏใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚ฌใ‚คใƒ‰ ้‡‘ๆฒขใƒ—ใƒฌใ‚ผใƒณ่ณ‡ๆ–™
LED้›ปๆบๅ›ž่ทฏใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚ฌใ‚คใƒ‰ ้‡‘ๆฒขใƒ—ใƒฌใ‚ผใƒณ่ณ‡ๆ–™LED้›ปๆบๅ›ž่ทฏใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚ฌใ‚คใƒ‰ ้‡‘ๆฒขใƒ—ใƒฌใ‚ผใƒณ่ณ‡ๆ–™
LED้›ปๆบๅ›ž่ทฏใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚ฌใ‚คใƒ‰ ้‡‘ๆฒขใƒ—ใƒฌใ‚ผใƒณ่ณ‡ๆ–™
ย 
Sm chapter27
Sm chapter27Sm chapter27
Sm chapter27
ย 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27
ย 
First order active rc sections hw1
First order active rc sections hw1First order active rc sections hw1
First order active rc sections hw1
ย 
Report
ReportReport
Report
ย 
Unit5-KOM
Unit5-KOMUnit5-KOM
Unit5-KOM
ย 
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
ย 
Wiring Design of KUET Auditorium Building
Wiring Design of KUET Auditorium BuildingWiring Design of KUET Auditorium Building
Wiring Design of KUET Auditorium Building
ย 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
ย 
132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdf132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdf
ย 
Elecmachine
ElecmachineElecmachine
Elecmachine
ย 
FINAL
FINALFINAL
FINAL
ย 

Recently uploaded

CSP_Study - Notes (Paul McNeill) 2017.pdf
CSP_Study - Notes (Paul McNeill) 2017.pdfCSP_Study - Notes (Paul McNeill) 2017.pdf
CSP_Study - Notes (Paul McNeill) 2017.pdf
Ismail Sultan
ย 
๐Ÿ”ฅIndependent Call Girls In Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Esco...
๐Ÿ”ฅIndependent Call Girls In Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Esco...๐Ÿ”ฅIndependent Call Girls In Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Esco...
๐Ÿ”ฅIndependent Call Girls In Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Esco...
AK47
ย 
๐Ÿ”ฅYoung College Call Girls Chandigarh ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chan...
๐Ÿ”ฅYoung College Call Girls Chandigarh ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chan...๐Ÿ”ฅYoung College Call Girls Chandigarh ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chan...
๐Ÿ”ฅYoung College Call Girls Chandigarh ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chan...
sonamrawat5631
ย 
Sachpazis_Consolidation Settlement Calculation Program-The Python Code and th...
Sachpazis_Consolidation Settlement Calculation Program-The Python Code and th...Sachpazis_Consolidation Settlement Calculation Program-The Python Code and th...
Sachpazis_Consolidation Settlement Calculation Program-The Python Code and th...
Dr.Costas Sachpazis
ย 
Call Girls Madurai 8824825030 Escort In Madurai service 24X7
Call Girls Madurai 8824825030 Escort In Madurai service 24X7Call Girls Madurai 8824825030 Escort In Madurai service 24X7
Call Girls Madurai 8824825030 Escort In Madurai service 24X7
Poonam Singh
ย 
anatomy of space vehicle and aerospace structures.pptx
anatomy of space vehicle and aerospace structures.pptxanatomy of space vehicle and aerospace structures.pptx
anatomy of space vehicle and aerospace structures.pptx
ssusercf1619
ย 
โฃIndependent Call Girls Chennai ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chennai E...
โฃIndependent Call Girls Chennai ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chennai E...โฃIndependent Call Girls Chennai ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chennai E...
โฃIndependent Call Girls Chennai ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chennai E...
nainakaoornoida
ย 
Cricket management system ptoject report.pdf
Cricket management system ptoject report.pdfCricket management system ptoject report.pdf
Cricket management system ptoject report.pdf
Kamal Acharya
ย 
๐Ÿ”ฅLiploCk Call Girls Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Escorts Ser...
๐Ÿ”ฅLiploCk Call Girls Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Escorts Ser...๐Ÿ”ฅLiploCk Call Girls Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Escorts Ser...
๐Ÿ”ฅLiploCk Call Girls Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Escorts Ser...
adhaniomprakash
ย 
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
DharmaBanothu
ย 
Data Communication and Computer Networks Management System Project Report.pdf
Data Communication and Computer Networks Management System Project Report.pdfData Communication and Computer Networks Management System Project Report.pdf
Data Communication and Computer Networks Management System Project Report.pdf
Kamal Acharya
ย 
ESCORT SERVICE FULL ENJOYโ€Š-โ€Š@9711199012, Mayur Vihar CALL GIRLS SERVICE Delhi
ESCORT SERVICE FULL ENJOYโ€Š-โ€Š@9711199012, Mayur Vihar CALL GIRLS SERVICE DelhiESCORT SERVICE FULL ENJOYโ€Š-โ€Š@9711199012, Mayur Vihar CALL GIRLS SERVICE Delhi
ESCORT SERVICE FULL ENJOYโ€Š-โ€Š@9711199012, Mayur Vihar CALL GIRLS SERVICE Delhi
AK47
ย 
๐Ÿ”ฅPhoto Call Girls Lucknow ๐Ÿ’ฏCall Us ๐Ÿ” 6350257716 ๐Ÿ”๐Ÿ’ƒIndependent Lucknow Escorts...
๐Ÿ”ฅPhoto Call Girls Lucknow ๐Ÿ’ฏCall Us ๐Ÿ” 6350257716 ๐Ÿ”๐Ÿ’ƒIndependent Lucknow Escorts...๐Ÿ”ฅPhoto Call Girls Lucknow ๐Ÿ’ฏCall Us ๐Ÿ” 6350257716 ๐Ÿ”๐Ÿ’ƒIndependent Lucknow Escorts...
๐Ÿ”ฅPhoto Call Girls Lucknow ๐Ÿ’ฏCall Us ๐Ÿ” 6350257716 ๐Ÿ”๐Ÿ’ƒIndependent Lucknow Escorts...
AK47
ย 
Cuttack Call Girls ๐Ÿ’ฏCall Us ๐Ÿ” 7374876321 ๐Ÿ” ๐Ÿ’ƒ Independent Female Escort Service
Cuttack Call Girls ๐Ÿ’ฏCall Us ๐Ÿ” 7374876321 ๐Ÿ” ๐Ÿ’ƒ Independent Female Escort ServiceCuttack Call Girls ๐Ÿ’ฏCall Us ๐Ÿ” 7374876321 ๐Ÿ” ๐Ÿ’ƒ Independent Female Escort Service
Cuttack Call Girls ๐Ÿ’ฏCall Us ๐Ÿ” 7374876321 ๐Ÿ” ๐Ÿ’ƒ Independent Female Escort Service
yakranividhrini
ย 
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdfSELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
Pallavi Sharma
ย 
My Airframe Metallic Design Capability Studies..pdf
My Airframe Metallic Design Capability Studies..pdfMy Airframe Metallic Design Capability Studies..pdf
My Airframe Metallic Design Capability Studies..pdf
Geoffrey Wardle. MSc. MSc. Snr.MAIAA
ย 
My Aerospace Design and Structures Career Engineering LinkedIn version Presen...
My Aerospace Design and Structures Career Engineering LinkedIn version Presen...My Aerospace Design and Structures Career Engineering LinkedIn version Presen...
My Aerospace Design and Structures Career Engineering LinkedIn version Presen...
Geoffrey Wardle. MSc. MSc. Snr.MAIAA
ย 
College Call Girls Kolkata ๐Ÿ”ฅ 7014168258 ๐Ÿ”ฅ Real Fun With Sexual Girl Available...
College Call Girls Kolkata ๐Ÿ”ฅ 7014168258 ๐Ÿ”ฅ Real Fun With Sexual Girl Available...College Call Girls Kolkata ๐Ÿ”ฅ 7014168258 ๐Ÿ”ฅ Real Fun With Sexual Girl Available...
College Call Girls Kolkata ๐Ÿ”ฅ 7014168258 ๐Ÿ”ฅ Real Fun With Sexual Girl Available...
Ak47
ย 
Better Builder Magazine, Issue 49 / Spring 2024
Better Builder Magazine, Issue 49 / Spring 2024Better Builder Magazine, Issue 49 / Spring 2024
Better Builder Magazine, Issue 49 / Spring 2024
Better Builder Magazine
ย 
Literature review for prompt engineering of ChatGPT.pptx
Literature review for prompt engineering of ChatGPT.pptxLiterature review for prompt engineering of ChatGPT.pptx
Literature review for prompt engineering of ChatGPT.pptx
LokerXu2
ย 

Recently uploaded (20)

CSP_Study - Notes (Paul McNeill) 2017.pdf
CSP_Study - Notes (Paul McNeill) 2017.pdfCSP_Study - Notes (Paul McNeill) 2017.pdf
CSP_Study - Notes (Paul McNeill) 2017.pdf
ย 
๐Ÿ”ฅIndependent Call Girls In Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Esco...
๐Ÿ”ฅIndependent Call Girls In Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Esco...๐Ÿ”ฅIndependent Call Girls In Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Esco...
๐Ÿ”ฅIndependent Call Girls In Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Esco...
ย 
๐Ÿ”ฅYoung College Call Girls Chandigarh ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chan...
๐Ÿ”ฅYoung College Call Girls Chandigarh ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chan...๐Ÿ”ฅYoung College Call Girls Chandigarh ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chan...
๐Ÿ”ฅYoung College Call Girls Chandigarh ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chan...
ย 
Sachpazis_Consolidation Settlement Calculation Program-The Python Code and th...
Sachpazis_Consolidation Settlement Calculation Program-The Python Code and th...Sachpazis_Consolidation Settlement Calculation Program-The Python Code and th...
Sachpazis_Consolidation Settlement Calculation Program-The Python Code and th...
ย 
Call Girls Madurai 8824825030 Escort In Madurai service 24X7
Call Girls Madurai 8824825030 Escort In Madurai service 24X7Call Girls Madurai 8824825030 Escort In Madurai service 24X7
Call Girls Madurai 8824825030 Escort In Madurai service 24X7
ย 
anatomy of space vehicle and aerospace structures.pptx
anatomy of space vehicle and aerospace structures.pptxanatomy of space vehicle and aerospace structures.pptx
anatomy of space vehicle and aerospace structures.pptx
ย 
โฃIndependent Call Girls Chennai ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chennai E...
โฃIndependent Call Girls Chennai ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chennai E...โฃIndependent Call Girls Chennai ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chennai E...
โฃIndependent Call Girls Chennai ๐Ÿ’ฏCall Us ๐Ÿ” 7737669865 ๐Ÿ”๐Ÿ’ƒIndependent Chennai E...
ย 
Cricket management system ptoject report.pdf
Cricket management system ptoject report.pdfCricket management system ptoject report.pdf
Cricket management system ptoject report.pdf
ย 
๐Ÿ”ฅLiploCk Call Girls Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Escorts Ser...
๐Ÿ”ฅLiploCk Call Girls Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Escorts Ser...๐Ÿ”ฅLiploCk Call Girls Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Escorts Ser...
๐Ÿ”ฅLiploCk Call Girls Pune ๐Ÿ’ฏCall Us ๐Ÿ” 7014168258 ๐Ÿ”๐Ÿ’ƒIndependent Pune Escorts Ser...
ย 
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
An In-Depth Exploration of Natural Language Processing: Evolution, Applicatio...
ย 
Data Communication and Computer Networks Management System Project Report.pdf
Data Communication and Computer Networks Management System Project Report.pdfData Communication and Computer Networks Management System Project Report.pdf
Data Communication and Computer Networks Management System Project Report.pdf
ย 
ESCORT SERVICE FULL ENJOYโ€Š-โ€Š@9711199012, Mayur Vihar CALL GIRLS SERVICE Delhi
ESCORT SERVICE FULL ENJOYโ€Š-โ€Š@9711199012, Mayur Vihar CALL GIRLS SERVICE DelhiESCORT SERVICE FULL ENJOYโ€Š-โ€Š@9711199012, Mayur Vihar CALL GIRLS SERVICE Delhi
ESCORT SERVICE FULL ENJOYโ€Š-โ€Š@9711199012, Mayur Vihar CALL GIRLS SERVICE Delhi
ย 
๐Ÿ”ฅPhoto Call Girls Lucknow ๐Ÿ’ฏCall Us ๐Ÿ” 6350257716 ๐Ÿ”๐Ÿ’ƒIndependent Lucknow Escorts...
๐Ÿ”ฅPhoto Call Girls Lucknow ๐Ÿ’ฏCall Us ๐Ÿ” 6350257716 ๐Ÿ”๐Ÿ’ƒIndependent Lucknow Escorts...๐Ÿ”ฅPhoto Call Girls Lucknow ๐Ÿ’ฏCall Us ๐Ÿ” 6350257716 ๐Ÿ”๐Ÿ’ƒIndependent Lucknow Escorts...
๐Ÿ”ฅPhoto Call Girls Lucknow ๐Ÿ’ฏCall Us ๐Ÿ” 6350257716 ๐Ÿ”๐Ÿ’ƒIndependent Lucknow Escorts...
ย 
Cuttack Call Girls ๐Ÿ’ฏCall Us ๐Ÿ” 7374876321 ๐Ÿ” ๐Ÿ’ƒ Independent Female Escort Service
Cuttack Call Girls ๐Ÿ’ฏCall Us ๐Ÿ” 7374876321 ๐Ÿ” ๐Ÿ’ƒ Independent Female Escort ServiceCuttack Call Girls ๐Ÿ’ฏCall Us ๐Ÿ” 7374876321 ๐Ÿ” ๐Ÿ’ƒ Independent Female Escort Service
Cuttack Call Girls ๐Ÿ’ฏCall Us ๐Ÿ” 7374876321 ๐Ÿ” ๐Ÿ’ƒ Independent Female Escort Service
ย 
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdfSELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
ย 
My Airframe Metallic Design Capability Studies..pdf
My Airframe Metallic Design Capability Studies..pdfMy Airframe Metallic Design Capability Studies..pdf
My Airframe Metallic Design Capability Studies..pdf
ย 
My Aerospace Design and Structures Career Engineering LinkedIn version Presen...
My Aerospace Design and Structures Career Engineering LinkedIn version Presen...My Aerospace Design and Structures Career Engineering LinkedIn version Presen...
My Aerospace Design and Structures Career Engineering LinkedIn version Presen...
ย 
College Call Girls Kolkata ๐Ÿ”ฅ 7014168258 ๐Ÿ”ฅ Real Fun With Sexual Girl Available...
College Call Girls Kolkata ๐Ÿ”ฅ 7014168258 ๐Ÿ”ฅ Real Fun With Sexual Girl Available...College Call Girls Kolkata ๐Ÿ”ฅ 7014168258 ๐Ÿ”ฅ Real Fun With Sexual Girl Available...
College Call Girls Kolkata ๐Ÿ”ฅ 7014168258 ๐Ÿ”ฅ Real Fun With Sexual Girl Available...
ย 
Better Builder Magazine, Issue 49 / Spring 2024
Better Builder Magazine, Issue 49 / Spring 2024Better Builder Magazine, Issue 49 / Spring 2024
Better Builder Magazine, Issue 49 / Spring 2024
ย 
Literature review for prompt engineering of ChatGPT.pptx
Literature review for prompt engineering of ChatGPT.pptxLiterature review for prompt engineering of ChatGPT.pptx
Literature review for prompt engineering of ChatGPT.pptx
ย 

Transmission and distribution system design

  • 1. Roll no. PUR072BEL005 Design of a Transmission line whose parameters are: Selection of Most Economical Voltage and Number of Circuits The most economical voltage is given by the following empirical formula: Economical Voltage (V eco) = 5.5 * 150**cos 1000* 6.1 Nc PLt ๏ฆ ๏€ซ Where, Lt = length of transmission line =95 km P = Power to be transmitted =145 MW Cosร˜ = Power factor = 0.96 Nc = Number of circuits For Nc= 1 Using the above values, we get V eco = 5.5 * โˆš 100 1.6 + 200โˆ—1000 0.96โˆ—1โˆ—150 = 209.534 kV โˆด Nearest Standard Voltage (V1) = 220kV For Nc= 2 Then, using the above values, we get V eco = 5.5*โˆš 100 1.6 + 200โˆ—1000 0.96โˆ—2โˆ—150 = 151.319 kV โˆด Nearest Standard Voltage (V2) = 132 kV Power to be transmitted (P) =200 MW Transmission Line Length (Lt) =100 km Standard Voltage levels are: 66 kV 132 kV 220 kV 400 kV 500 kV 700 kV 750 kV 765 kV 1000 kV
  • 2. Roll no. PUR072BEL005 Checking Technical Criterion Surge Impedance Loading (SIL): For Nc =1, Characteristic Impedance (Zc) =400 ฮฉ SIL1 = ๐‘‰12 ๐‘๐‘ = 2202 400 = 121 MW For Nc =2, Characteristic Impedance (Zc) = 200 ฮฉ SIL2 = ๐‘‰22 ๐‘๐‘ = 1322 400 = 87.12 MW Calculation of Multiplying factor (Mf): For Nc=1, Mf1 = ๐‘ƒ ๐‘†๐ผ๐ฟ1 = 200 121 = 1.653 For Nc=2, Mf2 = ๐‘ƒ ๐‘†๐ผ๐ฟ2 = 200 87.12 = 2.296 From Table, for 100 Km line length, Mflimit of the line lies between 2.25 and 2.75. Therefore, using interpolation to find Mflimit for 100km, we have Mf๐‘™๐‘–๐‘š๐‘–๐‘ก = 2.75 + 2.25 โˆ’ 2.75 160 โˆ’ 80 (95 โˆ’ 80) = 2.625 Decision: Here, Mf1<Mf๐‘™๐‘–๐‘š๐‘–๐‘ก and Mf2<Mf๐‘™๐‘–๐‘š๐‘–๐‘ก . Here both are technically feasible. However the mf margin for Nc=1 is 0.972 and for Nc=2 is 0.329. Since, mf margin for Nc=2 is lower, we select double circuit. Thus, Line Length (km) Mflimit 80 2.75 160 2.25 240 1.75 320 1.35 480 1.0 640 0.75 Voltage Level for given Power Transmission =132 kV Number of Circuits (Nc) = 2 Power factor (cosฯ†) = 0.96
  • 3. Roll no. PUR072BEL005 Air Clearance and Conductor Spacing Calculation 1) Minimum air clearance required from earthed object is given by ๐’‚ = ๐‘‰๐‘Ÿ๐‘š๐‘  ร— 1.1 โˆš3 + 30 ๐‘๐‘š = 132 โˆ— โˆš2 ร— 1.1 โˆš3 + 30 = 148.55 ๐‘๐‘š = 1.48 m 2) Maximum String Swing (ษตmax) = 450 3) Length of string or insulator hanging (l) = a Secษตmax= 148.55 * Sec450 = 210.08 cm =2.10 m โˆดl=2.10 m 4) Cross arm length (CL) = a (1+tanษตmax) = 148.55 * (1+ tan 450 ) = 297.1 cm โˆดCL = 297.1 cm = 2.97 m 5) Vertical distance between two adjacent line conductor (y) = 22 1 )( ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ซ ๏ƒท๏ƒท ๏ƒธ ๏ƒถ ๏ƒง๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ ๏€ซ CL al y x al Where, 0.25 < x/y< 0.333 Lets take x/y = 0.3 y = 210.08+148.55 โˆš1โˆ’(0.3)2( 210.08+148.55 297.1 ) 2 = 384.74 ๐‘๐‘š โˆดDistance between two conductors(y) = 3.84 m 6) x= y * 0.3 = 3.84 m * 0.3 = 1.15 m โˆด x= 1.15 m 7) Width of tower (b) = 1.5a = 1.5* 1.48 = 2.22 m โˆด b = 2.22 m 8) Distance between the earth wire and the topmost cross-arm for double circuit: d= โˆš3 โˆ— ๐ถ๐‘™ โˆ’ ๐‘™ = โˆš3 โˆ—2.97โ€“ 2.10 = 3.04 m โˆด d = 3.04 m 9) Right of way (ROY) = 2*CL + b = 2* 2.97 + 2.22 = 8.16 m
  • 4. Roll no. PUR072BEL005 Therefore, height of tower = h +2 y + d = Hg + s + 2y + d where, Hg = minimum ground clearance = 6.1 + s + 2 * 3.84 + 3.04 And s = sag of the conductor = (16.82 + s) m Selection criteria for number of earth wire Voltage levels No. of circuits (Nc) Number of earth wire (Ne) 66 kV *(1/2) 1 132 kV 1 2 1 2 220 kV 1 2 1 2 โ‰ฅ 400 kV 2 *(1/2) 2 2 From above table, for double circuit of 132 kV, number of earth wire is 2 Air Clearance from Earthed Object (a) = 1.48 m Length of String (l)= 2.10 m Cross arm Length (CL) = 2.97 m Width of Tower (b) = 2.22 m Vertical Distance between two adjacent line conductors (y) = 3.84 m Height of Earth Wire from Top Most Cross arm (d) = 3.04 m Horizontal Distance between Two adj. line conductors Or Right of Way (2Cl+b) = 8.16 m Thus, number of earth wire(Ne) =2 is selected.
  • 5. Roll no. PUR072BEL005 Number of Disc Selection For all the calculations of number of insulator discs of size 254 *154 mm, we considered following value of different factors: FOWR= Flashover Withstand Ratio = 1.15 NACF = Non-Standard Atmospheric Condition factor =1.1 FS = Factor of Safety=1.2 Here, System Voltage = 132 kV and Max. System voltage = 145.2 kV a. 1 minute Dry Test Equivalent Flashover Voltage = 1 min. dry withstand voltage * FOWR * NACF * FS Where, 1 min. dry withstand voltage is given in table A-2 for 145.2 kV system voltage = 265 kV โˆดEquivalent FOV = 265 * 1.15 * 1.1 * 1.2 = 402.27 kV Nearest higher 1 min. dry FOV voltage (in table A-3) = 435 kV From table A-3, for 1 minute dry FOV = 435 kV, no. of discs = 7 โˆดNo. of disc = Nd1 = 7 b. 1 minute Wet Test Equivalent FOV = 1 min. wet withstand voltage * FOWR * NACF * F S Where, 1 min. wet withstand voltage is given in table A-2 for 145.2 system voltage = 230 kV โˆดEquivalent FOV = 230 * 1.15 * 1.1 * 1.2 = 349.14 kV Nearest higher 1 min. wet FOV voltage (in table A-3) = 370 kV. From table A-3, for 1 minute dry FOV = 370 kV, no. of discs = 9 โˆด No. of discs = Nd2 = 9 c. Temporary Over Voltage Test Temporary o/v = EF * maximum system voltage Where, EF = Earthing Factor = 0.8 (for Nepal) โˆดTemporary o/v = 0.8 * 145.2 = 116.16 kV Equivalent FOV = Temporary o/v * โˆš2 * FOWR * NACF * FS = 116.16 * โˆš2 * 1.15 * 1.1 * 1.2
  • 6. Roll no. PUR072BEL005 = 249.3695 kV Wet season is the worst condition. Thus, nearest higher FOV (from table A-3, 1 min. wet FOV) =250 kV โˆดNo. of discs = Nd3 = 6 d. Switching Over Voltage Test Switching o/v = Maximum per phase peak voltage * SSR Where, SSR = Switching Surge Ratio = 2.8 โˆดSwitching o/v = 132 * โˆš2 โˆš3 * 1.1* 2.8 = 331.49 kV Equivalent s/w FOV = Switching o/v * SIR * FOWR * NACF * FS Where, SIR = Switching to Impulse Ratio = 1.2 Equivalent FOV = 331.49 * 1.2 * 1.15 * 1.1 * 1.2 = 603.8 kV The nearest higher voltage (in table A-3, impulse FOV) = 610 kV โˆดNo. of discs = Nd4 = 6 e. Lightening Over Voltage Test Equivalent impulse withstand o/v = 550 kV (from table A-2) for 145.2 kV Equivalent impulse FOV = Equivalent impulse withstand voltage * FWR * NAC * FS = 550 * 1.15 * 1.1 * 1.2 = 834.9 kV The nearest higher voltage (in table A-3, impulse FOV) = 860 kV โˆดNo. of discs = Nd5 = 9 S.N. Test No. of Discs a. 1 min. Dry Test 7 b. 1 min. Wet Test 9 c. Temporary O/V Test 6 d. Switching O/V Test 6 e. Lightening O/V Test 9 From the table, it is seen that the minimum no. of disc required to withstand all tests is 9. โˆด The No. of discs required for our design (Nd) is 9.
  • 7. Roll no. PUR072BEL005 Conductor Selection I. Continuous Current Carrying Capability/ P = 200 MW, Nc = 2, VL = 132 kV, Cosฯ† = 0.96 Line current is calculated as: Line current (IL) = ๏ฆcos**3 / llV NcP = 200โˆ—10^6/2 โˆš3โˆ—132โˆ—10^3โˆ—0.96 = 455.611 A Comparing this value of the current with the current carrying capacity from the given standard ASCR conductor table, the conductor โ€œLYNXโ€ (with current carrying Capacity 475 A) is selected. II. Transmission Efficiency Criterion For LYNX conductor, From ASCR conductor table, Resistance at 200 C (R20) = 0.15890 ฮ/Km Coefficient of Resistivity (ฮฑ20) =0.004 /0 C (For Aluminum) So Resistance at 650 C (R65) = R20 (1 +ฮฑ20(65-20)) = 0.15890(1+0.004*45) = 0.187502 ฮ/Km Total Resistance of the line for 95 Km = 18.7502 ฮ โˆดTotal Power Loss (PL) = 3* IL 2 *R65 * Nc = 3* 455.6112 *18.7502*2 = 23.3532 MW โˆดษณ = 1- ๐‘ƒ๐‘™ ๐‘ƒ = 1- 25.3532 200 = 88.3234 % This efficiency is <94%. So this conductor cannot be used. To get the higher efficiency we proceed in the same way and calculate efficiency for SHEEP as shown below. For SHEEP conductor, From ASCR conductor table, Resistance at 200 C (R20) = 0.07771 ฮ/Km Coefficient of Resistivity (ฮฑ20) =0.004 /0 C (For Aluminum) So Resistance at 650 C (R65) = R20 (1 +ฮฑ20(65-20))
  • 8. Roll no. PUR072BEL005 = 0.07771 (1+0.004*45) = 0.0916978 ฮ/Km Total Resistance of the line for 95 Km = 9.16978 ฮ โˆดTotal Power Loss (PL) = 3* IL 2 *R65 * Nc = 3* 333.792 *9.16978*2 = 11.421 MW โˆดษณ = 1- ๐‘ƒ๐‘™ ๐‘ƒ = 1 โ€“ 11.421 200 = 94.2895% Thus, this efficiency is >94% (i.e. 94.21%). So we select the conductor BEAR. Conductor R20(ฮ/Km) R65 (ฮ/Km) Ploss (MW) ษณ (%) Remarks LYNX 0.15890 0.187502 23.3532 88.3234 <94% SHEEP 0.07771 0.0916978 11.421 94.2895 >94% III. Voltage Regulation Criterion The SHEEP conductor has 37 strands (30 Aluminum strands and 7 steel strands). Diameter of conductor (D) =27.93mm Radius of the conductor(R) =13.965mm GMR for inductance (rโ€™) =0.768R =0.768 * 13.965 =10.72512mm = 1.073 cm GMR for capacitance (r) = R = 13.965 mm. = 1.3965 cm Here, Vertical distance between two conductors (y) = 3.84m Cross arm length (CL) = 2.97 m Width of tower (b) = 2.22 m Horizontal distance between two conductors (2*CL + b) = 8.16 m (i.e. ROY)
  • 9. Roll no. PUR072BEL005 Fig. Double Circuit Line Representation i.e. Dacหˆ =8.16 m = Dcaโ€™= Dbbหˆ = Daโ€™c = Dbโ€™b = Dcโ€™a Dabโ€™= โˆš(๐ท๐‘Ž๐‘โ€ฒ)2 + (๐‘ฆ)2= โˆš8.162 + 3.842 = 9.018 m=Dbaโ€™=Dbcโ€™=Dcbโ€™ Dca = 2*3.84 = 7.68 m= Dcโ€™aโ€™ Dab=3.84 m= Dbc= Dbโ€™aโ€™= Dbโ€™cโ€™ Daaหˆ=โˆš(๐ท๐‘Ž๐‘โ€ฒ)2 + (2๐‘ฆ)2= โˆš8.162 + (2 โˆ— 3.84)2 = 11.2 m = Dccหˆ For GMD Calculation: GMD = (Dab .Dab' . Da'b .Da'b' .Dbc .Dbc'.Db'c .Db'c' .Dca .Dca' . Dc'a .Dc'a')1/12 = ( 3.84*9.018*9.018*3.84*3.84*9.018*9.018*3.84*7.68*8.16*8.16*7.68)1/12 โˆดGMD=6.496 m For GMR Calculation: Here, for GMRL, rโ€™=0.768R = 0.9 cm Dsa= โˆš๐ท๐‘Ž๐‘Ž โˆ— ๐ท๐‘Ž๐‘Žโ€ฒ โˆ— ๐ท๐‘Žโ€ฒ ๐‘Žโ€ฒ โˆ— ๐ท๐‘Žโ€ฒ๐‘Ž 4 =โˆš๐ท ๐‘Ž๐‘Žโ€ฒ โˆ— ๐‘Ÿโ€ฒ = โˆš11.2 โˆ— 9 โˆ— 10^(โˆ’3) = 0.3174m=31.74 cm Dsb = โˆš๐ท๐‘๐‘ โˆ— ๐ท๐‘๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ ๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ๐‘ 4 = โˆš๐ท ๐‘๐‘โ€ฒ โˆ— ๐‘Ÿโ€ฒ = โˆš8.16 โˆ— 9 โˆ— 10^(โˆ’3) =0.2709m=27.09 cm Dsc = โˆš๐ท๐‘๐‘ โˆ— ๐ท๐‘๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ ๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ๐‘ 4 = โˆš๐ท๐‘๐‘โ€ฒ โˆ— ๐‘Ÿโ€ฒ = โˆš11.2 โˆ— 9 โˆ— 10^(โˆ’3) = 0.3174m= 31.74 cm โˆดGMRL =โˆš๐ท๐‘ ๐‘Ž โˆ— ๐ท๐‘ ๐‘ โˆ— ๐ท๐‘ ๐‘ 3 =โˆš31.74 โˆ— 27.09 โˆ— 31.74 3 = 30.107 cm
  • 10. Roll no. PUR072BEL005 For GMRc, Here, for GMRC, r=R=11.725 mm=11.725*10-3 m Dsa= โˆš๐ท๐‘Ž๐‘Ž โˆ— ๐ท๐‘Ž๐‘Žโ€ฒ โˆ— ๐ท๐‘Žโ€ฒ ๐‘Žโ€ฒ โˆ— ๐ท๐‘Žโ€ฒ๐‘Ž 4 =โˆš ๐ท ๐‘Ž๐‘Žโ€ฒ โˆ— ๐‘Ÿ = โˆš11.2 โˆ— 11.725 โˆ— 10^(โˆ’3) =0.3623 m =36.23cm Dsb = โˆš๐ท๐‘๐‘ โˆ— ๐ท๐‘๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ ๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ๐‘ 4 = โˆš ๐ท ๐‘๐‘โ€ฒ โˆ— ๐‘Ÿ = โˆš8.16 โˆ— 11.725 โˆ— 10โˆ’3 =0.3093m =30.93 cm Dsc = โˆš๐ท๐‘๐‘ โˆ— ๐ท๐‘๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ ๐‘โ€ฒ โˆ— ๐ท๐‘โ€ฒ๐‘ 4 = โˆš ๐ท๐‘๐‘โ€ฒ โˆ— ๐‘Ÿ = โˆš11.2 โˆ— 11.725 โˆ— 10^(โˆ’3) =0.3623m=36.23cm โˆด GMRC=โˆš ๐ท๐‘ ๐‘Ž โˆ— ๐ท๐‘ ๐‘ โˆ— ๐ท๐‘ ๐‘ 3 =โˆš36.23 โˆ— 30.93 โˆ— 36.23 3 = 34.36 cm Now, Inductance per unit length (L) = 2 โˆ— 10โˆ’7 โˆ— ln ( ๐บ๐‘€๐ท ๐บ๐‘€๐‘… ๐ฟ ) H/m = 2 โˆ— 10โˆ’7 โˆ— ln ( 6.496โˆ—100 30.107 ) = 6.143*10-7 H/m = 6.143*10-7 *103 *103 =0.6143 mH/km โˆดCapacitance per unit Length(C) = 2๐œ‹๐œ€ ln( ๐บ๐‘€๐ท ๐บ๐‘€๐‘…๐‘ ) โˆ— 1000 ๐น/๐‘˜๐‘š [ฦ0 = 8.85*10-12 F/m] = 2๐œ‹โˆ—8.85โˆ—10โˆ’12 ๐‘™๐‘›( 6.496โˆ—100 34.36 ) โˆ— 1000 = 1.891*10-8 F/km โˆดCapacitance per unit length = 1.891*10โˆ’8 F/km Resistance of whole length = 12.255 ฮ โˆด Resistance per unit length = 0.12255 ฮ/Km Impedance of the line (Z) = R65 + j XL =R+j(2ฯ€*f*L ) = (0.12255+j*(2ฯ€*50*6.143*10-4 ) ) [f=50 Hz] = (0.12255 +j 0.1929) ฮฉ/km =(0.12255 +j 0.1929) * 100 ฮฉ =12.255+j 18.333 ฮฉ
  • 11. Roll no. PUR072BEL005 = 22.051โˆ ๐Ÿ“๐Ÿ”. ๐Ÿ๐Ÿ‘ 0 ฮฉ Susceptance of the line (Y) = j w C = j*2ฯ€*50*1.891 *10-8 *95= j 5.643 *10-4 Siemens = 5.643*10-4 โˆ 900 Siemens Calculation of ABCD parameters Since 100 km line length lies on medium Transmission line (i.e. 50 โ€“200 km), Calculation of parameters is done Using ฯ€-model. Fig: Nominal ฯ€- model of T.L. ๐€ = ๐ƒ = 1 + YZ 2 = 1 + 5.643 โˆ— 10โˆ’4 โˆ 900 โˆ— 22.051โˆ 56.230 2 = ๐ŸŽ. ๐Ÿ—๐Ÿ—๐Ÿ’โˆ ๐ŸŽ. ๐Ÿ๐Ÿ—๐Ÿ—ยฐ = ๐ŸŽ. ๐Ÿ—๐Ÿ—๐Ÿ’ + ๐ฃ๐Ÿ‘. ๐Ÿ’๐Ÿ“๐Ÿ– ๐ = Z =22.051 โˆ  56.23 ๐‚ = Y (1 + YZ 4 ) = 5.643 โˆ— 10โˆ’4 โˆ 900 (1 + 5.643 โˆ— 10โˆ’4 โˆ 900 โˆ— 22.051โˆ 56.230 4 ) = โˆ’๐Ÿ—. ๐Ÿ•๐Ÿ“๐Ÿ• โˆ— ๐Ÿ๐ŸŽโˆ’๐Ÿ• + ๐ฃ๐Ÿ“. ๐Ÿ”๐Ÿ๐Ÿ– โˆ— ๐Ÿ๐ŸŽโˆ’๐Ÿ’ = ๐Ÿ“. ๐Ÿ”๐Ÿ๐Ÿ– โˆ— ๐Ÿ๐ŸŽโˆ’๐Ÿ’ โˆ ๐Ÿ—๐ŸŽ. ๐ŸŽ๐Ÿ—ยฐ โˆด| ๐ผ ๐‘…| @ full load = 333.79 A Cos ฮฆ = 0.95(lag) โˆดฮฆ = -18.190 Then, IR =333.79โˆ -18.19 A โˆดVR per phase @ full load = 132 โˆš3 โˆ— ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ โˆ  00 = ( ๐Ÿ•๐Ÿ”๐Ÿ๐Ÿ๐ŸŽโˆ ๐ŸŽยฐ)V โˆด|VR| per phase @ full load = 76210 V = 76.21 kV Therefore, Sending end voltage is given by โˆด VS (per phase) @ full load = A VR + B IR =(0.994โˆ 0.199ยฐ)*( 76210โˆ 0ยฐ) +(22.051 โˆ  56.23)*333.79โˆ โˆ’18.190 = ๐Ÿ–๐Ÿ๐Ÿ“๐Ÿ’๐Ÿ—. ๐Ÿ๐Ÿ— + ๐’‹ ๐Ÿ’๐Ÿ•๐Ÿ—๐Ÿ–. ๐Ÿ”๐Ÿ” VS VR IR Y/2 ZIS Y/2 2
  • 12. Roll no. PUR072BEL005 = 81690.25โˆ 3.36 V = 81.69 โˆ  3.36 kV Hence, |VR| per phase @ no load = | ๐‘‰๐‘  @ ๐‘“๐‘ข๐‘™๐‘™ ๐‘™๐‘œ๐‘Ž๐‘‘ ๐ด | = | 81.69 0.994 | = 82.18 kV โˆดVoltage Regulation (V.R.) = | ๐‘‰๐‘Ÿ@ ๐‘›๐‘œ ๐‘™๐‘œ๐‘Ž๐‘‘|โˆ’|๐‘‰๐‘Ÿ @ ๐‘“๐‘ข๐‘™๐‘™ ๐‘™๐‘œ๐‘Ž๐‘‘| |๐‘‰๐‘Ÿ @ ๐‘“๐‘ข๐‘™๐‘™ ๐‘™๐‘œ๐‘Ž๐‘‘| = 82.18โˆ’76.21 76.21 = 7.83 % Since calculated voltage regulation < 12 %, the conductor SHEEP satisfies voltage regulation criterion. IV. Corona Inception Voltage Criterion For BEER conductor, Maximum system voltage = 132 * 1.1 = 145.2 kV (rms) Corona inception voltage (Vci) = โˆš3 โˆ— Air dielectric strength * GMRC * m * ฮด * ๐‘™๐‘› ( ๐บ๐‘€๐ท ๐บ๐‘€๐‘…๐‘ ) Where, Air dielectric strength = 21.21 kV/ cm (rms) GMRc = 34.36 cm GMD = 649.6 cm m = Roughness factor = 0.9 ฮด = Relative density of air = 0.95 โˆดVci= โˆš3 โˆ— 21.21 * 34.36 * 0.9 * 0.95 * ๐‘™๐‘› ( 649.6 34.36 )= 3170.909 kV Since Vci> Maximum system voltage (145.2 kV), there is no corona effect on BEER conductor. So, Corona Inception Voltage criterion is satisfied and all the technical criteria is met by BEER conductor. Hence the best five conductors which satisfy all the criteria are: Thus, the conductor SHEEP can be used for our design. 1. SHEEP 2. DEER 3. ZEBRA 4. ELK 5. MOOSE
  • 13. Roll no. PUR072BEL005 Tension Calculation for Different Conductors 1. Toughest condition -T1 tension and Sag is minimum (Dmin). - Wt. of conductor (w1) 2. Normal Operating Condition (Stringing Condition) โ€“ T2 tension and S2 sag - Wt. of conductor (w2) 3. Easiest condition โ€“ T3 tension and Sag is maximum (Dmax). - Wt. of conductor (w3) Let wc = weight of conductor per unit length ww = weight per unit length due to wind wice= weight per unit length due to ice โˆด Weight during toughest condition = w1 = โˆš(๐‘ค๐‘ + ๐‘ค๐‘–๐‘๐‘’)2 + ๐‘ค ๐‘ค 2 Calculation of Tension @ toughest condition (T1) T1โ‰ค ๐‘ˆ๐‘‡๐‘† ๐น๐‘† where, UTS = Ultimate Tensile Strength of the conductor FS = Factor of safety = 2 Calculation of Tension at Normal condition (T2) T2 is given by stringing equation T2 2 (T2 + k1) โ€“ k2 = 0 Where, k1 = -๐‘‡1 + ฮฑ (ฮธ2 โ€“ ฮธ1) A ฯต + ๐‘ค1 2 ๐‘™2 24 ๐‘‡1 2 Aฯต k2 = ๐‘ค2 2 ๐‘™2 24 Aฯต ฯต= Modulus of Elasticity ฮฑ= Coefficient of linear expansion A = Cross-section area of conductor ฮธ2 = Temperature at normal condition = 270 C ฮธ1 = Temperature at toughest condition = 00 C w1 = per unit length conductor weight @ toughest condition w2 = per unit length conductor weight @ stringing condition Calculation of Tension @ Easiest condition (T3) wc + wice ww w1
  • 14. Roll no. PUR072BEL005 T3 is given by Stringing equation T3 2 (T3 + k1โ€™) โ€“ k2โ€™= 0 Where, k1โ€™ = -T2 + ฮฑ (ฮธ3 โ€“ ฮธ2) A ฯต + ๐‘ค1 2 ๐‘™2 24 ๐‘‡2 2 Aฯต k2โ€™ = ๐‘ค2 2 ๐‘™2 24 Aฯต = k2 ฮธ3 = Temperature @ easiest condition = 650 C Now, we perform tension calculation for conductors โ€œSHEEP,DEER,ZEBRA,ELK,MOOSEโ€ with Span length 250 m, 275 m, 300 m, 325 m, and 350 m. The Tensions for Toughest, Stringing (Normal) and Easiest condition are calculated and tabulated below. Sample Calculation For SHEEP Conductor Area of conductor (A) = 462.60 mm2 Coefficient of linear expansion (ฮฑ) = 17.73*10-6 /0 C Modulus of Elasticity (ฮต) = 0.789*106 kg/cm2 Ultimate Tensile Strength (UTS) = 15910 kg Wt. of conductor per unit length (wc) = 1726 kg/km Wind Pressure (wp) = 100 kg/m2 Conductor diameter (d) = 27.93 mm Thickness of ice (t) = 10 mm = 0.01 m โ€ซุžโ€ฌWt due to wind (ww) per km = (wp*1000)*(d*2/3) kg/km = 100*1000*27.93*10-3 *2/3 = 1862kg/km Wt due to ice loading (wi) = ฯ€ t (d+t) ฯice *1000 kg/km = ฯ€ * 0.01 (0.02345+0.01)* 950 *1000 = 998.31 kg/km โ€ซุžโ€ฌWt. @ Toughest condition (w1)= โˆš(๐‘ค๐‘ + ๐‘ค๐‘–)2 + ๐‘ค ๐‘ค 2 = โˆš(17262 + 18262 = 25838.921 kg/km โ€ซุžโ€ฌ Wt. @ Stringing Condition (w2) = wc = 1726 kg/km โ€ซุžโ€ฌWt. @ Easiest Condition (w3) = wc = 1726 kg/ km
  • 15. Roll no. PUR072BEL005 Temperature @ Toughest condition (ษต1) = 00 C Temperature @ Normal Condition (ษต2) = 270 C Temperature @ Easiest Condition (ษต3) = 650 C Calculation of T1 T1 = ๐‘ˆ๐‘‡๐‘† ๐น๐‘† = 15910 2 = 7955kg ( since, T1=110.9kN=11316.3kg) Calculation of T2 k1 = -T1 + ฮฑ (ฮธ2 โ€“ ฮธ1) A ฯต + ๐‘ค12 ๐‘™2 24 ๐‘‡12 Aฯต k2 = ๐‘ค22 ๐‘™2 24 Aฯต From stringing equation, T2 2 (T2 + k1) โ€“ k2 = 0 or, T2 3 + k1 T2 2 โ€“ k2 = 0 or, T2 3 -5239.54 T2 2 โ€“ 2.831*1010 = 0 โˆดT2= 6020.697 kg Calculation of T3 k1โ€™ = -T2 + ฮฑ (ฮธ3 โ€“ ฮธ2) A ฯต + ๐‘ค12 ๐‘™2 24 ๐‘‡22 Aฯต = -1871.33 k2โ€™ = k2 = 2.8316*1010
  • 16. Roll no. PUR072BEL005 From Stringโ€™s equation, T3 2 (T3 + k1โ€™) โ€“ k2โ€™ = 0 or,T3 3 +k1โ€™T3 2 โ€“ k2โ€™ = 0 or,T3 3 โ€“ 2.831*1010 =0 or, T3 = 3815.932 kg Hence, five best conductors have been chosen. The tension due to these five different conductors for different span length from 250m to 350m (step of 25m) are shown in the following tables :
  • 17. Roll no. PUR072BEL005 Sag and Tower Height Calculation The maximum sag between two towers is given by Dmax = ๐‘ค3๐‘™๐‘  ๐‘2 8๐‘‡3 Where, w3= weight of conductor per unit length @ easiest condition. Lsp = Span length T3 = Tension @ easiest condition. Minimum ground clearance = hg = ( ๐‘‰๐‘ ๐‘š๐‘Ž๐‘ฅโˆ’33) 33 + 17 ๐‘“๐‘’๐‘’๐‘ก Where, Vsmax= Maximum system voltage. Now, Height of lowest conductor = h1 = hg + Dmax Height of middle conductor = h2 = h1 + y [For Nc=2] Height of topmost conductor = h3 = h2 + y Height of tower = ht = h3 + dโ€™ From air clearance section, we have dโ€™ =distance between earth wire and topmost power conductor = 3.04 m y= vertical distance between two conductors = 3.84m
  • 18. Roll no. PUR072BEL005 Vsmax= 132*1.1 =145.2 kV hg= (145.2โˆ’33) 33 + 17 ๐‘“๐‘’๐‘’๐‘ก = 20.4 ft. = 6.21792 m Sample Calculation For SHEEP Conductor w3 = wt. per unit length @ easiest condition = 1219 kg/km. (=w2 in table 1.1) lsp= 250m = 0.25 km (assume) T3 = 1684.78 kg (from table 1.1) = 3.533m โˆด h1 = hg + Dmax = 6.21792+3.533= 9.75092 m h2 = h1 + y = 9.75092+2.00967 = 11.76059m h3 = h2 + y = 13.77026 m ht = h3+dโ€™ = 19.2687 m Similarly, the maximum sag, h1, h2, h3 and the total height of the tower for different span lengths for five best conductors are calculated and presented in the table shown here:
  • 19. Roll no. PUR072BEL005 Earth Wire Selection From earth wire table, earth wire GUINEA is chosen as follows: No of strands = 19 Diameter of a strand = 2.92mm Weight of conductor = 590kg/km Diameter of earth wire (de) = 14.60mm Area of Conductor = 127.20mm2 Ultimate tensile strength = 6664 kg Hence, maximum tension (T1e) = 3332 kg
  • 20. Roll no. PUR072BEL005 Bending Moment and Tower Weight Calculation For design purpose, we consider 80% of the towers are of class A, 15% of the towers are of class B and 5% of the towers are of class C. The bending moment acting on the tower are due to the followings: ๏ƒ˜ wind force on power conductor (BMPw) ๏ƒ˜ wind force on earth wire (BMEw) ๏ƒ˜ Turning of power conductor (BMPT) ๏ƒ˜ Turning of earth conductor (BMET). Sample Calculation For SHEEP and span length (lsp) = 250m a. BM due to power conductor BM due to wind force (BMPw) = Fwp * (h1+h2+h3)*Nc Where, Fwp = Wind force =wp * dp * lsp * 2/3 wp = Wind pressure = 100kg/m2 dp = diameter of power conductor = 27.93 mm = 27.93*10-3 m h1 = height of bottom most conductor = 9.75162m (table 2.1) h2 = height of middle conductor = 11.76129m (table 2.1) h3 = height of top most conductor = 13.77096 m (table 2.1) Nc = No. of circuits = 1 lsp = span length = 250m โˆด BMPw = wp* dp*lsp* 2/3* (h1+h2+h3)*Nc = 100*27.93*10-3 *250*2/3*(9.75162 +11.76129 +13.77096)*2 = 32847.32787 kgm
  • 21. Roll no. PUR072BEL005 BM due to turning (BMPt) = 2*T1*(0.8 sin10 +0.15 sin7.50 + 0.05 sin 150 )*(h1+h2+h3)*Nc Where, T1 = Tension @ toughest condition = 7955kg (table 1.1) โˆด BMPt = 2*7955*(0.8 sin10 +0.15 sin7.50 + 0.05 sin 150 )* (9.75162 +11.76129 +13.77096)*2 = 15910* 0.046482* 35.28177*2 = 52183.7574 kgm. b. BM due to earth wire BM due to wind force (BMEw) = Fwe * ht * Ne = wp*de*lsp*2/3*ht*Ne Where, Fwe = Wind force on earth conductor Wp = wind pressure = 100kg/m2 de = Diameter of earth conductor = 14.60 mm = 14.60*10-3 m (for GUINEA) lsp = Span length = 250m ht = tower height = 19.26933m (from table 2.1) Ne = No. of earth wire = 1 โˆด BMEw = 100*14.60* 10-3 *250*2/3*19.26933*2 = 93774.434 kgm BM due to turning (BMEt) BMEt = 2 T1e*(0.8 sin10 +0.15 sin7.50 + 0.05 sin 150 )*ht*Ne Where T1e = Tension on earth conductor @ toughest condition T1e = UTS of GUINEA /2 = 6664/2 = 3332 kg โˆด BMEt = 2*3332*(0.8 sin10 +0.15 sin7.50 + 0.05 sin 150 )*19.26933*2 = 11937.193 kgm โˆด Total Bending Moment (TBM) = BMPw+BMPt+BMEw+BMEt = 106345.7123 kgm โˆด Tower weight (TW) Where FS = Factor of Safety = 2
  • 22. Roll no. PUR072BEL005 โˆด TW = 0.000631*19.26933*โˆš๐Ÿ๐ŸŽ๐Ÿ”๐Ÿ‘๐Ÿ’๐Ÿ“. ๐Ÿ•๐Ÿ๐Ÿ๐Ÿ‘ โˆ— ๐Ÿ = 5.60734 tonnes Similarly, we can calculate the total bending moment and tower weight for different conductors at different span length:
  • 23. Roll no. PUR072BEL005 Tower Cost per Unit Length Calculation Assumptions: Cost of steel = Rs 1, 50,000 per tonnes No. of towers = + 1 = Nt [Lt = Total Length and lsp = Span length] โˆดCost of tower per unit length = Cost per tower * Nt /Lt Sample Calculation For SHEEP and for span length = 250m lsp = 250m Lt = 100 km Tower weight (TW) = 5.60734 tonnes (from table 3.1) Cost per tower = cost per tonne โˆ— weight of tower = 1, 50,000 *5.60734 =Rs. 841101 Cost of tower per unit length = Cost per tower * Nt / Lt = 841101*401/100 = Rs. 3372815.01/km Similarly we can find tower cost/km for 5 different conductors for their different span length. The tower cost per unit length is shown in the following table:
  • 24. Roll no. PUR072BEL005 Hence, the tower cost per unit length is minimum for SHEEP conductor with span length 275 m.
  • 25. Roll no. PUR072BEL005 Most Economical Span and Conductor Selection: Assumption: Cost of Al/tonnes= Rs 20105 Cost of Steel/ tonnes = Rs 150000 Load Factor (LF) = 0.5 Loss of Load Factor (LLF) = k1*(LF)+k2*(LF)2 k1 = 0.2 And k2=0.8 โˆด LLF = 0.5 * 0.2 + 0.52 * 0.8 = 0.3 [Note: k1+k2=1] Per unit energy cost = Rs 7.50 /- Life span (n) = 25 years Now, Rate of interest (i) = 10% โˆด Annuity factor ( Annual Capital cost = ฯ’*capital cost per km Capital cost per km = Tower cost per km (from table 4) + power conductor cost per km Total cost of power conductor per km = (cost of Al/km + cost of steel/km) * Total no. of conductor Cost of Al/km = Weight of Al/km * cost of Al/tons Cost of Steel/km = Weight of Steel/km * cost of Steel / tons Cost of energy loss/km = PL*LLF*time*Rate of cost PL = Power loss = IL 2 * r65 * Total no. of power conductor Total annual cost per km = Annual energy loss cost + Annual capital cost Sample Calculation: For SHEEP conductor From table (4.1), the economical span length = 275 m From ACSR table, Weight of Aluminum = 1036 kg/km Weight of Steel = 690 kg/km Total cost of power conductor per km = No. of conductors*cost of power conductor per km/conductor = 6* (20105*1036+150000*690)*10-3 = 745972.68 From above calculation, Tower cost per km = Rs. 3343801.241 (for span length of 275m from table 4.1)
  • 26. Roll no. PUR072BEL005 โˆด Capital cost per km = Tower cost per km + Power conductor cost per km = Rs (3343801.241+ 745972.68) = Rs 4089773.921 Annual capital cost = ฯ’ * Capital cost per km = 0.110168 * 4089773.921 = Rs 450562.2133per km Power loss per Km (PL) = = IL 2 R65' * Total number of conductors IL = 455.611 A [From conductor selection section] R65 = 0.0916978 ฮ/Km [From Voltage Regulation section in conductor selection] Total number of conductors= 6 โˆด PL = 455.611 2 *0.0916978 *6 = 114208.537 W/km = 114.2085 kW/km Annual Cost of energy loss per km = PL * LLF * time * cost per unit energy = 114.2085 * 0.3*(365*24)*7.50 = Rs. 2251049.535/- Total annual cost per km = Annual cost of energy loss per km + Annual capital cost = Rs 2251049.535+ Rs 450562.2133 = Rs 2701611.748/- Similarly, We can calculate the Total annual cost per km for each conductor with their respective economic span length. The tabulated form of the calculation is shown below: Hence, From above table, it can be seen that MOOSE is the most economical conductor with span length of 275m.
  • 27. Roll no. PUR072BEL005 Transmission line Characteristics of the conductor MOOSE A. Electrical Characteristics The MOOSE conductor has 61 strands with 7 Steel strands and 54 Aluminum strands. Diameter of each strands = 3.53mm Diameter of conductor (d) = 31.77 mm = 3.177 cm Radius of conductor = 15.885 mm = 1.588 cm GMR for inductance (GMRL) = 33.9041 cm GMR for capacitance (GMRc) = 38.6856 cm GMD for Double circuit = 686.5811 cm Resistance of the whole length(R) = 9.16978 ฮฉ@ 650 C Inductance of Whole length (L) = 0.060164 H Capacitance of whole Length(C) = 1.9333ฮผF Impedance of the Line (Z) = 9.1678 +j 18.901ฮฉ Susceptance of the Line (Y) = j0.6074*10-3 Siemens Calculation of A, B, C, D parameters A = 1+YZ/2 = 0.9943 < 0.16045ยฐ B = Z (1+YZ/4) =21 . 0071 < 64.125ยฐ C = Y = 0.000606 < 90.08ยฐ D = A = 0.9943 < 0.16045ยฐ Sending end Voltage (Vs) = A*Vr+B*Ir = 82.5209<5.08190 kV (per phase) โˆด Voltage Regulation = (|Vs|/A -|Vr|)/|Vr| = ((82.5209/0.9943)- 76.21)/76.21 = 8.9%<12%
  • 28. Roll no. PUR072BEL005 Corona Inception Voltage Criterion Corona Inception voltage (Vci) =21.21*GMR*m*ฮด*ln(GMD/GMR) โˆดVci =โˆš3 * 21.21 * 38.6856*0.9*0.95* ln (686.5811 /38.6856) Vci = 3494.9778 kV>Vsmax B. Mechanical characteristics: Length of span =275 m Tension at toughest condition = T1 = 8125 kg Tension at stringing condition = T2= 5855.13 kg Tension at easiest condition =T3= 3616.56 kg Tower Heights: H1 = 11.45084 m H2 = 13.46051 m H3 = 15.47018 m Ht = 20.9685 m Maximum sag (Dmax) = 8.74 m Bending Moment on Earth wire due to Wind Force (BMEw) = 12797.919 kgm Bending Moment on Earth wire due to Turning (BMET) = 12990.2765 kgm Bending Moment on Power Conductor due to wind force (BMPw) = 47040.4545 kgm Bending Moment on Power Conductor due to turning (BMPT) = 61002.9773 kgm Total Bending Moment (TBM) = 133831.63 kgm Tower Weight = 6.8453 tonnes Tower Cost = 6.8453*(Rs 150000)= Rs 1026795 No. of Towers (Nt) = 365 Capital Cost per km = Rs. 3747801.75 Total Annual cost per km = Rs. 2092785.581
  ็ฟป่ฏ‘๏ผš