尊敬的 微信汇率:1円 ≈ 0.046166 元 支付宝汇率:1円 ≈ 0.046257元 [退出登录]
SlideShare a Scribd company logo
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Individual	
  Robot	
  Analysis	
  	
  
Diana	
  Wu	
  Wong	
  	
  
A98066631	
  
Team	
  4:	
  Jaeger	
  	
  
Component:	
  Friction	
  Drivetrain	
  
MAE3	
  Section	
  A01	
  
T.A	
  Howard	
  Tai	
  	
  
	
  
	
   	
  
Wu	
  Wong	
  1	
  
	
  
Part	
  I:	
  Description	
  of	
  Components.	
  
Overview	
  of	
  “Gypsy	
  Danger”	
  	
  
	
   	
   	
   	
   	
   Initial	
  Position	
  View	
  	
   	
   	
   	
   	
   	
   	
  
	
  
	
  
	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  robot,	
  Gypsy	
  Danger,	
  fits	
  to	
  the	
  10x10x10	
  inches	
  constraint	
  and	
  it	
  is	
  created	
  to	
  carry	
  balls	
  from	
  a	
  10-­‐
inch-­‐high	
  elevated	
  platform	
  to	
  a	
  5-­‐inch-­‐high	
  elevated	
  goalie	
  within	
  a	
  20	
  inches	
  distance.	
  This	
  robot	
  was	
  designed	
  
to	
  drive,	
  lift	
  its	
  upper	
  base,	
  extend	
  its	
  arm	
  to	
  reach	
  behind	
  the	
  balls	
  on	
  the	
  elevated	
  platform	
  and	
  retract	
  back	
  its	
  
arm	
  so	
  that	
  the	
  ball	
  rests	
  on	
  the	
  upper	
  platform.	
  It	
  would,	
  then,	
  drive	
  back	
  to	
  the	
  elevated	
  goalie	
  and	
  release	
  the	
  
ball.	
  The	
  robot	
  mainly	
  consists	
  of	
  3	
  components:	
  the	
  base	
  with	
  two	
  friction	
  drives	
  powered	
  by	
  high-­‐speed	
  
motors,	
  a	
  lift	
  that	
  elevates	
  the	
  upper	
  platform	
  up	
  to	
  5	
  inches	
  higher	
  than	
  the	
  limited	
  height	
  and	
  an	
  extendable	
  
arm	
  that	
  extends	
  up	
  to	
  7	
  inches	
  long.	
  The	
  friction	
  drives	
  provide	
  great	
  mobility	
  on	
  high	
  speed.	
  It	
  allows	
  very	
  
sharp	
  turns,	
  it	
  is	
  able	
  to	
  turn	
  360	
  degrees,	
  and	
  move	
  forwards	
  and	
  backwards	
  on	
  a	
  straight	
  line.	
  The	
  lift	
  allows	
  
the	
  upper	
  platform	
  to	
  elevate	
  to	
  the	
  needed	
  height	
  for	
  the	
  arm	
  reach	
  the	
  balls	
  when	
  extended.	
  At	
  its	
  maximum	
  
height,	
  it	
  can	
  help	
  the	
  arm	
  to	
  reach	
  the	
  yellow	
  ball,	
  which	
  are	
  often	
  inaccessible	
  for	
  most	
  robots	
  seen.	
  	
  
Fully	
  Extended	
  View	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  
Wu	
  Wong	
  2	
  
	
  
Component	
  Overview:	
  Friction	
  Drivetrain	
  
	
  
The	
  robot	
  drives	
  around	
  using	
  a	
  classic	
  friction	
  drivetrain	
  attached	
  to	
  both	
  sides	
  of	
  the	
  base.	
  There	
  
are	
  a	
  total	
  of	
  4	
  3-­‐inch-­‐diameter	
  wheels	
  with	
  O-­‐Rings	
  in	
  the	
  back	
  wheels	
  to	
  help	
  provide	
  friction.	
  While	
  most	
  
friction	
  drivetrains	
  use	
  rubber	
  bands	
  on	
  the	
  back	
  wheels,	
  we	
  decided	
  to	
  substitute	
  them	
  with	
  O-­‐Rings	
  
secured	
  with	
  hot	
  glue	
  since	
  rubber	
  bands	
  wore	
  out	
  faster.	
  The	
  drivetrain	
  is	
  powered	
  by	
  2	
  high-­‐speed	
  
motors	
  mounted	
  on	
  “mounters”	
  and	
  pressed	
  onto	
  the	
  back-­‐wheels	
  with	
  the	
  force	
  of	
  springs	
  to	
  help	
  provide	
  
friction	
  and	
  prevent	
  the	
  wheels	
  from	
  slipping.	
  
The	
  base	
  also	
  includes	
  a	
  6x2x2.5	
  inches	
  acrylic	
  box	
  that	
  fits	
  underneath	
  both	
  motors	
  to	
  help	
  
prevent	
  the	
  motors	
  from	
  tilting	
  inwards	
  and	
  slipping	
  away	
  
from	
  the	
  back	
  wheels.	
  The	
  box	
  also	
  secures	
  both	
  motors	
  to	
  the	
  
same	
  height	
  so	
  that	
  the	
  force	
  pressing	
  the	
  motor	
  to	
  the	
  wheels	
  
is	
  equivalent	
  on	
  both	
  sides.	
  This	
  helps	
  the	
  wheels	
  to	
  spin	
  at	
  the	
  
same	
  rate	
  and	
  makes	
  sure	
  that	
  the	
  robot	
  moves	
  forward	
  and	
  
backwards	
  in	
  a	
  straight	
  line.	
  	
  
o Minimum	
  Set	
  of	
  Functional	
  Requirements:	
  	
  
-­‐ Robot	
  must	
  be	
  able	
  to	
  move	
  back	
  and	
  forwards	
  straight.	
  
-­‐ Robot	
  must	
  be	
  able	
  to	
  support	
  the	
  weight	
  of	
  the	
  robot.	
  	
  
-­‐ Robot	
  must	
  fit	
  within	
  the	
  10x10x10	
  bounded	
  area.	
  
-­‐ Robot	
  must	
  be	
  able	
  to	
  travel	
  20	
  inches	
  within	
  5	
  seconds.	
  	
  
-­‐ Robot	
  must	
  be	
  able	
  to	
  stop	
  efficiently	
  	
  
-­‐ Robot	
  must	
  be	
  reliable.	
  	
  
-­‐ No	
  slipping.	
  	
  
	
  
o Design	
  Solutions	
  Considered	
  	
  
There	
  were	
  many	
  different	
  diameters	
  of	
  wheels	
  tested	
  to	
  help	
  achieve	
  the	
  ideal	
  drivetrain	
  that	
  
would	
  provide	
  enough	
  force	
  to	
  carry	
  the	
  weight	
  of	
  the	
  entire	
  robot	
  and	
  ensure	
  it	
  travels	
  the	
  required	
  
distance	
  within	
  a	
  limited	
  time.	
  	
  Larger	
  wheels	
  provide	
  larger	
  force	
  and	
  torque	
  to	
  the	
  drivetrain	
  and	
  
make	
  it	
  more	
  powerful	
  and	
  reliable,	
  while	
  smaller	
  wheels	
  help	
  sharper	
  turns	
  and	
  faster	
  mobility.	
  The	
  
decision	
  came	
  down	
  between	
  5-­‐inch-­‐diameter	
  wheels	
  and	
  3-­‐inch-­‐diameter	
  wheels.	
  While	
  larger	
  wheels	
  
were	
  more	
  preferable,	
  because	
  of	
  the	
  nature	
  of	
  the	
  design,	
  the	
  5-­‐inch-­‐diameter	
  wheels	
  would	
  not	
  have	
  
enough	
  constraints	
  and	
  they	
  would	
  start	
  to	
  wobble	
  eventually	
  slipping	
  the	
  high-­‐speed	
  motor	
  off.	
  We	
  
Wu	
  Wong	
  3	
  
	
  
decided	
  to	
  use	
  the	
  3-­‐inch-­‐diameter	
  wheel	
  and	
  sacrifice	
  power	
  and	
  torque	
  for	
  a	
  more	
  reliable	
  drivetrain	
  
that	
  would	
  fulfill	
  our	
  functional	
  requirements.	
  	
  
o Summary	
  of	
  the	
  Component	
  
The	
  drivetrain	
  is	
  moderately	
  reliable.	
  It	
  has	
  worked	
  80%	
  of	
  the	
  time	
  at	
  its	
  best.	
  Its	
  speed	
  is	
  
extremely	
  high	
  and	
  it’s	
  turns	
  are	
  very	
  efficient.	
  The	
  resulting	
  speed,	
  measured	
  from	
  timing	
  the	
  robot,	
  
was	
  about	
  20	
  inches	
  in	
  3	
  seconds,	
  which	
  outdid	
  the	
  expected	
  speed	
  (comparison	
  and	
  analysis	
  on	
  the	
  
measurements	
  will	
  be	
  provided	
  in	
  the	
  later	
  sections	
  of	
  the	
  report).	
  Most	
  importantly,	
  it	
  was	
  still	
  able	
  
the	
  weight	
  of	
  the	
  robot	
  with	
  a	
  diligent	
  matter,	
  without	
  affecting	
  much	
  its	
  speed.	
  The	
  product	
  did	
  not	
  
only	
  fulfill	
  the	
  functional	
  requirements	
  set	
  at	
  the	
  beginning	
  of	
  the	
  design,	
  but	
  also	
  exceeded	
  them	
  from	
  
the	
  result	
  its	
  performance.	
  	
  
Part	
  II:	
  Project	
  Management	
  Reflection-­‐	
  Concept	
  Generation	
  and	
  Creativity.	
  	
  
On	
  week	
  4	
  Dr.	
  Delson	
  assigned	
  us	
  the	
  Individual	
  Concept	
  Generation	
  Assignment.	
  	
  Each	
  person	
  was	
  
to	
  come	
  up	
  with	
  4	
  designs	
  prior	
  to	
  meeting	
  up	
  with	
  the	
  team.	
  There	
  were	
  16	
  different	
  designs,	
  ranging	
  
from	
  ball	
  shooters,	
  nets,	
  and	
  claws.	
  However,	
  the	
  most	
  important	
  and	
  hardest	
  part	
  of	
  this	
  project	
  was	
  to	
  
have	
  4	
  people	
  to	
  agree	
  on	
  one	
  single	
  design	
  out	
  of	
  16	
  of	
  them.	
  The	
  design	
  must	
  fit	
  within	
  the	
  10x10x10	
  inch	
  
boundary.	
  It	
  must	
  be	
  able	
  to	
  deliver	
  balls	
  from	
  a	
  10-­‐inch-­‐high	
  elevated	
  platform	
  across	
  a	
  20	
  inches	
  long	
  
field	
  to	
  a	
  5-­‐inch-­‐high	
  elevated	
  goalie,	
  not	
  to	
  mention	
  the	
  15-­‐inch-­‐high	
  yellow	
  balls	
  in	
  the	
  middle	
  of	
  the	
  
platform.	
  We	
  came	
  to	
  a	
  group	
  understanding	
  that	
  components	
  of	
  the	
  robot	
  must	
  be	
  able	
  to	
  expand	
  long	
  
enough	
  to	
  be	
  able	
  to	
  reach	
  the	
  yellow	
  balls	
  at	
  most	
  and	
  mobile	
  to	
  deliver	
  the	
  balls	
  to	
  the	
  goalie.	
  We	
  
evaluated	
  each	
  design’s	
  pros	
  and	
  cons	
  with	
  the	
  help	
  of	
  the	
  Pugh	
  Chart	
  and	
  chose	
  a	
  design	
  with	
  components	
  
from	
  various	
  team	
  members’	
  designs.	
  	
  
However	
  the	
  final	
  design	
  was	
  a	
  completely	
  different	
  design	
  that	
  did	
  not	
  resemble	
  from	
  any	
  of	
  the	
  
previous	
  designs.	
  Instead	
  of	
  using	
  fish	
  strings	
  and	
  foldable	
  arms,	
  which	
  were	
  frequently	
  overlapped	
  in	
  the	
  
concept	
  generation	
  assignments,	
  our	
  team	
  designed	
  an	
  arm	
  that	
  would	
  fit	
  in	
  the	
  box	
  and	
  extend	
  vertically	
  
through	
  a	
  gear	
  attached	
  to	
  a	
  geared-­‐motor.	
  Although	
  this	
  design	
  would	
  extend	
  long	
  enough	
  to	
  cover	
  the	
  
width	
  of	
  the	
  elevated	
  platform	
  and	
  reach	
  for	
  both	
  the	
  white	
  balls	
  and	
  yellow	
  balls,	
  it	
  wasn’t	
  high	
  enough	
  to	
  
reach	
  the	
  platform.	
  Therefore	
  we	
  decided	
  to	
  include	
  a	
  lift	
  that	
  would	
  help	
  elevate	
  the	
  upper	
  platform	
  where	
  
the	
  arm	
  was	
  placed	
  to	
  help	
  achieve	
  the	
  needed	
  height	
  to	
  reach	
  the	
  yellow	
  balls.	
  Our	
  original	
  design	
  also	
  
included	
  a	
  ramp	
  that	
  would	
  connect	
  from	
  the	
  platform	
  to	
  the	
  goalie,	
  however	
  this	
  design	
  was	
  omitted	
  2	
  
weeks	
  before	
  the	
  presentation	
  of	
  the	
  finalized	
  product	
  since	
  we	
  discovered	
  that	
  although	
  the	
  design	
  of	
  the	
  
ramp	
  would	
  facilitate	
  delivering	
  the	
  ball	
  from	
  the	
  platform	
  straight	
  to	
  the	
  goalie,	
  it	
  constraint	
  the	
  robot	
  and	
  
it	
  couldn’t	
  reach	
  some	
  of	
  the	
  balls.	
  	
  
Although	
  in	
  the	
  end,	
  we	
  didn’t	
  choose	
  the	
  design	
  that	
  the	
  Pugh	
  Chart	
  helped	
  us	
  narrow	
  down	
  to,	
  we	
  
still	
  view	
  it	
  as	
  one	
  of	
  the	
  most	
  critical	
  parts	
  of	
  the	
  process	
  for	
  generating	
  our	
  design.	
  Through	
  this	
  process	
  
we	
  were	
  able	
  to	
  learn	
  to	
  communicate	
  as	
  a	
  team	
  and	
  reach	
  a	
  common	
  understanding	
  of	
  what	
  our	
  design	
  
emphasis	
  should	
  be:	
  Simplicity,	
  Efficiency	
  and	
  Reliable.	
  These	
  values	
  were	
  carried	
  on	
  to	
  the	
  generation	
  of	
  
our	
  final	
  design	
  that	
  became	
  very	
  simplistic,	
  but	
  highly	
  reliable.	
  This	
  method	
  will	
  definitely	
  be	
  carried	
  on	
  to	
  
my	
  future	
  design	
  projects,	
  as	
  it	
  was	
  one	
  of	
  the	
  most	
  valuable	
  process	
  that	
  involving	
  the	
  unification	
  of	
  the	
  
team	
  and	
  the	
  product	
  of	
  an	
  optimal	
  design.	
  	
  
	
  
	
  
	
   	
  
Wu	
  Wong	
  4	
  
	
  
Part	
  III:	
  Analysis	
  of	
  the	
  Component	
  	
  
o Objective	
  of	
  Analysis	
  	
  
The	
  objective	
  of	
  this	
  analysis	
  is	
  to	
  predict	
  whether	
  the	
  robot	
  will	
  be	
  able	
  to	
  travel	
  in	
  its	
  expected	
  
carrying	
  the	
  weight	
  of	
  the	
  robot	
  and	
  what	
  its	
  maximum	
  pushing	
  force	
  is.	
  This	
  analysis	
  can	
  help	
  predict	
  
the	
  size	
  of	
  the	
  back	
  wheel	
  needed	
  to	
  achieve	
  the	
  time	
  without	
  slipping.	
  The	
  bigger	
  the	
  wheel	
  is,	
  the	
  
more	
  reliable	
  the	
  drivetrain	
  is,	
  however	
  it	
  will	
  also	
  be	
  slower.	
  The	
  goal	
  is	
  to	
  balance	
  between	
  the	
  
reliability	
  and	
  speed	
  and	
  also	
  identify	
  at	
  what	
  pushing	
  force	
  the	
  wheels	
  will	
  begin	
  to	
  slip.	
  	
  
o Free	
  Body	
  Diagram:	
  Friction	
  Drivetrain	
  	
  
FBD	
  for	
  Traction	
  Limiting	
  Case	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Back	
  Wheel	
  and	
  Motor	
  Shaft	
  FBD	
  for	
  Motor	
  Stall	
  Analysis	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
o Energy	
  Analysis	
  	
  
Assumptions:	
  	
  	
  
-­‐ The	
  mass	
  is	
  concentrated	
  at	
  one	
  point	
  in	
  order	
  to	
  facilitate	
  the	
  calculations.	
  	
  
-­‐ There	
  is	
  no	
  slipping	
  between	
  the	
  wheels	
  and	
  the	
  ground	
  to	
  assume	
  the	
  maximum	
  efficiency	
  of	
  
the	
  drivetrain.	
  	
  
-­‐ Energy	
  lost	
  due	
  to	
  friction	
  is	
  minimal	
  and	
  negligible.	
  	
  
-­‐ The	
  robot	
  is	
  moving	
  at	
  constant	
  acceleration.	
  
	
  
The	
  energy	
  source	
  of	
  the	
  drivetrain	
  is	
  two	
  high-­‐speed	
  motors	
  mounted	
  on	
  each	
  side	
  of	
  the	
  back	
  
wheels.	
  The	
  energy	
  is	
  transferred	
  to	
  the	
  wheels	
  by	
  a	
  spring	
  that	
  pushed	
  the	
  motors	
  against	
  the	
  back	
  wheels	
  
and	
  ensure	
  the	
  friction	
  needed	
  to	
  keep	
  the	
  motors	
  from	
  slipping.	
  It	
  is	
  believed	
  that	
  the	
  high-­‐speed	
  motors	
  
will	
  provide	
  enough	
  torque	
  to	
  spin	
  the	
  wheels	
  up	
  to	
  the	
  expected	
  speed.	
  	
  
Linear	
  motion	
  involves	
  kinetic	
  energy	
  of	
  the	
  horizontal	
  distance	
  traveled	
  by	
  the	
  robot.	
  In	
  order	
  to	
  
determine	
  the	
  needed	
  energy,	
  the	
  kinetic	
  energy	
  will	
  be	
  calculated	
  from	
  the	
  information	
  available.	
  	
  
Wu	
  Wong	
  5	
  
	
  
𝐾𝑖𝑛𝑒𝑡𝑖𝑐  𝐸𝑛𝑒𝑟𝑔𝑦 =   
1
2
  𝑚 ∙ 𝑉!
	
  
The	
  velocity	
  is	
  found	
  by	
  the	
  equation	
  	
  
𝑉!"#$!%# =
𝐿
𝑡
=
20
5
= 4  𝑖𝑛𝑐ℎ/ sec   (0.1016
𝑚
𝑠
)	
  
The	
  initial	
  velocity	
  of	
  the	
  robot	
  will	
  be	
  at	
  rest.	
  So	
  ideally	
  the	
  robot	
  will	
  achieve	
  a	
  velocity	
  of	
   𝑉!"#	
  within	
  the	
  
5	
  second	
  periods	
  of	
  acceleration	
  so	
  that	
   𝑉!"#$!%#	
  =	
  4	
  inch/sec.	
  	
  
𝑉!"# + 𝑉!   0
2
=    𝑉!"#	
  
𝑉!"# = 2𝑉!"# = 8  𝑖𝑛𝑐ℎ/ sec 0.203
𝑚
𝑠
	
  
Inserting	
  the	
  newly-­‐found	
  variables	
  into	
  the	
  main	
  equation:	
  	
  
𝐾𝑖𝑛𝑒𝑡𝑖𝑐  𝐸𝑛𝑒𝑟𝑔𝑦 =   
1
2
  𝑚 ∙ 𝑉!"#
!
=
1
2
   1.347  𝑘𝑔 ∙ 0.203
𝑚
𝑠
!
= 0.0278  𝐽	
  
Therefore	
  the	
  Kinetic	
  Energy	
  for	
  60s	
  contest	
  is	
  1.67	
  J.	
  To	
  ensure	
  the	
  feasibility	
  of	
  moving	
  the	
  car	
  for	
  the	
  
distance,	
  the	
  factor	
  of	
  safety	
  must	
  be	
  taken	
  into	
  account.	
  	
  
The	
  maximum	
  amount	
  of	
  energy	
  for	
  60	
  seconds	
  for	
  the	
  high-­‐speed	
  motor	
  is	
  77.37	
  J.	
  This	
  value	
  is	
  provided	
  
by	
  the	
  MAE3	
  Website.	
  However	
  the	
  energy	
  is	
  provided	
  by	
  2	
  high-­‐speed	
  motors,	
  therefore	
  the	
  energy	
  
available	
  is	
  154.74	
  J	
  in	
  total.	
  	
  
  𝐹. 𝑆  𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑛𝑒𝑟𝑔𝑦!"!#$!%$&/𝐾. 𝐸 =  	
  
!"#.!  !
!.!"  !
= 92.66  	
  
The	
  power	
  needed	
  to	
  generate	
  the	
  kinetic	
  energy	
  in	
  60	
  seconds.	
  	
  
𝑃!"#$%!"& =
𝐾. 𝐸
𝑡
=   2.578	
  
The	
  factor	
  of	
  safety	
  power	
  is	
  calculated	
  as	
  follows	
  	
  
𝐹. 𝑆  𝑃𝑜𝑤𝑒𝑟 =   
𝑃!"!#$!%$&
𝑃!"#$%!"&
=   
2.58
0.028
= 92.14	
  
Although	
  the	
  Energy	
  Analysis	
  doesn’t	
  ensure	
  that	
  the	
  drivetrain	
  will	
  definitely	
  succeed,	
  it	
  does	
  provide	
  a	
  
general	
  prediction	
  of	
  the	
  whether	
  it	
  is	
  possible	
  to	
  work.	
  From	
  the	
  high	
  values	
  of	
  Factor	
  of	
  Safety,	
  it	
  seems	
  
that	
  the	
  drivetrain	
  is	
  highly	
  likely	
  to	
  perform	
  its	
  task.	
  
o Force/Torque	
  Analysis:	
  
-­‐Traction	
  Limiting	
  Case:	
  At	
  what	
  force	
  the	
  wheels	
  begin	
  to	
  slip.	
  	
  
Assumptions:	
  	
  
-­‐ Quasi-­‐static	
  Analysis.	
  All	
  forces	
  are	
  treated	
  as	
  static.	
  	
  
-­‐ Neglect	
  friction	
  of	
  the	
  wheel	
  bearing	
  	
  
-­‐ Friction	
  between	
  rubber	
  and	
  cardboard,	
  instead	
  of	
  O-­‐rings-­‐plastic,	
  as	
  the	
  closest	
  value	
  found	
  on	
  
the	
  internet.	
  	
  
Wu	
  Wong	
  6	
  
	
  
-­‐ Center	
  of	
  mass	
  is	
  off-­‐centered	
  because	
  the	
  weight	
  is	
  mainly	
  distributed	
  at	
  the	
  back	
  portion	
  of	
  
the	
  robot.	
  	
  
-­‐ The	
  friction	
  of	
  the	
  bearing	
  on	
  the	
  wheels	
  is	
  small	
  enough	
  to	
  be	
  neglected.	
  	
  
Variables:	
  	
  
a	
  (estimated	
  distance	
  back	
  wheel	
  to	
  center	
  of	
  mass)	
  =2.5	
  inch=0.0635	
  m	
  
b	
  (estimated	
  distance	
  front	
  wheel	
  to	
  center	
  of	
  mass)	
  =3.5	
  inch=	
  0.0889	
  m	
  	
  
𝜇	
  (coefficient	
  of	
  friction	
  	
  rubber-­‐cardboard)=0.65	
  
m	
  (mass	
  of	
  the	
  entire	
  robot)	
  =	
  1.347	
  kg	
  
Calculations:	
  	
  
	
   	
   Σ𝐹! = 0  	
  	
  	
  	
  	
  	
  	
  	
   𝐹!"#$!%&' − 𝐹!"#! = 0	
  
	
  	
   	
   Σ𝐹! = 0  	
  	
  	
  	
  	
  	
  	
  	
   𝑅!"#$ − 𝑅!"#$% = 0	
  
Σ𝑀! = 0  	
  	
  	
  	
  	
  	
  	
  	
   𝑚 𝑔𝑏 − 𝑅!"#$(𝑎 + 𝑏) = 0	
  	
  	
  	
  	
  	
  	
  	
   𝑅!"#$ =
!"#
!!!
	
  
Therefore	
  the	
  maximum	
  traction	
  force	
  happens	
  when	
  
𝐹!"#$!%&',!"# =   𝜇𝑁  	
  
N=	
  normal	
  force=𝑅!"#$%	
  	
  
µ=	
  Coefficient	
  of	
  friction	
  	
  
Therefore	
   𝐹!"#$!%&',!"# = 𝜇𝑅!"#$% =
!"#$
!!!
= 5  𝑁	
  
-­‐Motor	
  Torque	
  Analysis:	
  At	
  what	
  Force	
  will	
  the	
  Motor	
  Stall?	
  	
  
Assumptions:	
  	
  
-­‐ Traction	
  is	
  strong	
  enough	
  so	
  that	
  the	
  wheels	
  don’t	
  slip	
  	
  
-­‐ Quasi-­‐static	
  Analysis	
  	
  
-­‐ Neglect	
  friction	
  of	
  the	
  wheel	
  bearing	
  
Variables:	
  	
  
𝜏!	
  (torque	
  of	
  the	
  motor)=	
  0.012	
  Nm	
  
𝑟!!!!"=	
  1.5	
  inches=	
  0.0381	
  m	
  
	
  Calculations:	
  	
  
Σ𝐹! = 0  	
  	
  	
  	
  	
  	
  	
  	
   𝐹!"#$!%&' − 𝑅!"#$ = 0	
  
	
  	
   	
   Σ𝐹! = 0  	
  	
  	
  	
  	
  	
  	
  	
   𝑅!"#$ − 𝐴! = 0	
  
Σ𝑀! = 0  	
  	
  	
  	
  	
  	
  	
  	
   𝐹!"#$!%&' 𝑟!!!!" − 𝜏! = 0	
  
Therefore	
  	
  	
   𝐹!"#$!%&' =
!!
!
	
  
Maximum	
  pushing	
  force	
  happens	
  at	
  stall	
  torqueà	
   𝜏! =    𝜏!"#$$	
  
Wu	
  Wong	
  7	
  
	
  
Since	
  there	
  are	
  motors	
  on	
  both	
  sides	
  of	
  the	
  car	
  
	
   𝐹!"#$!%&' =
!!!"#$$
!
=   
!(!.!"#)
!.!"#$
= 6.30  𝑁  	
  
o Measurement	
  of	
  Component	
  Performance:	
  	
  
Equations	
  used:	
  
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝐸𝑟𝑟𝑜𝑟 =   
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙
𝐴𝑐𝑡𝑢𝑎𝑙
  ×100%	
  
The	
  velocity	
  of	
  the	
  drivetrain	
  was	
  measured	
  by	
  timing	
  the	
  amount	
  of	
  time	
  the	
  robot	
  took	
  to	
  travel	
  
10	
  inches.	
  This	
  method	
  simply	
  used	
  a	
  timer	
  to	
  time	
  the	
  robot	
  while	
  in	
  a	
  straight	
  line	
  for	
  10	
  inches.	
  	
  
The	
  resulting	
  measurements	
  were	
  10	
  inches	
  in	
  1.5	
  seconds	
  (0.169	
  m/s).	
  Compared	
  to	
  the	
  ideal	
  
speed	
  from	
  the	
  functional	
  requirement	
  of	
  the	
  robot	
  (20	
  inches	
  in	
  5	
  seconds,	
  0.1016	
  m/s),	
  the	
  robot	
  was	
  
40%	
  faster	
  than	
  the	
  expected	
  speed,	
  which	
  means	
  that	
  we	
  have	
  highly	
  underestimated	
  the	
  potential	
  
velocity	
  of	
  this	
  robot.	
  However	
  the	
  expected	
  velocity	
  was	
  a	
  value	
  that	
  was	
  set	
  by	
  the	
  team	
  as	
  a	
  functional	
  
requirement	
  for	
  the	
  robot,	
  the	
  fact	
  that	
  the	
  actual	
  speed	
  outdid	
  the	
  expected	
  velocity	
  is	
  highly	
  beneficial	
  for	
  
the	
  robot.	
  	
  
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝐸𝑟𝑟𝑜𝑟 =   
0.1016 − 0.169
0.169
  ×100% = 39.9% = ~40%	
  
The	
  pushing	
  force	
  was	
  measured	
  by	
  attaching	
  a	
  force	
  gauche	
  to	
  the	
  back	
  of	
  the	
  robot	
  and	
  holding	
  
the	
  other	
  end	
  of	
  the	
  gauche	
  while	
  the	
  robot	
  drove	
  straight.	
  The	
  same	
  result	
  was	
  given	
  by	
  driving	
  the	
  robot	
  
into	
  the	
  force	
  gauche	
  until	
  the	
  robot	
  couldn’t	
  move	
  further.	
  
The	
  resulting	
  measurement	
  was	
  8	
  N	
  of	
  pushing	
  force.	
  Compared	
  to	
  the	
  estimated	
  result	
  from	
  the	
  
Force	
  Analysis	
  from	
  the	
  previous	
  section	
  (6.3N	
  and	
  5N),	
  the	
  actual	
  pushing	
  force	
  was	
  underestimated	
  by	
  
21.3%	
  and	
  37.5%	
  respectively.	
  There	
  are	
  several	
  factors	
  that	
  might	
  have	
  resulting	
  such	
  great	
  percentage	
  of	
  
error,	
  however	
  the	
  most	
  attributed	
  factor	
  in	
  this	
  case	
  would	
  be	
  the	
  coefficient	
  of	
  friction	
  used.	
  Given	
  the	
  
limited	
  amount	
  of	
  material	
  combination	
  for	
  coefficient	
  of	
  friction	
  provided	
  by	
  the	
  internet,	
  the	
  closest	
  
material	
  combination	
  that	
  was	
  found	
  was	
  rubber-­‐cardboard	
  coefficient	
  of	
  friction	
  which	
  ranges	
  from	
  0.4	
  to	
  
0.8.	
  As	
  a	
  result,	
  a	
  coefficient	
  of	
  friction	
  of	
  0.65	
  was	
  chosen	
  to	
  input	
  in	
  the	
  calculations,	
  in	
  order	
  to	
  minimize	
  
the	
  inaccuracy.	
  However,	
  the	
  this	
  value	
  is	
  still	
  highly	
  inaccurate	
  since	
  the	
  coefficient	
  of	
  friction	
  of	
  the	
  actual	
  
material	
  (O-­‐rings	
  and	
  Acrylic)	
  is	
  still	
  unknown.	
  	
  
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝐸𝑟𝑟𝑜𝑟 =   
6.3 − 8
8
  ×100% = 21.3%          	
  
  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝐸𝑟𝑟𝑜𝑟 =   
5 − 8
8
  ×100% = 37.5%  	
  
o Conclusion:	
  	
  
The	
  Energy	
  Analysis	
  predicts	
  that	
  the	
  drivetrain	
  might	
  work,	
  however	
  it	
  does	
  not	
  ensure	
  that	
  it	
  will.	
  
On	
  the	
  other	
  hand,	
  the	
  Force	
  Analysis	
  gave	
  us	
  a	
  general	
  idea	
  of	
  the	
  amount	
  of	
  pushing	
  force	
  that	
  will	
  
make	
  the	
  wheels	
  slip	
  or	
  the	
  motor	
  stall.	
  From	
  these	
  analysis,	
  we	
  were	
  able	
  to	
  make	
  adjustments	
  to	
  the	
  
component	
  in	
  order	
  to	
  increase	
  the	
  pushing	
  force	
  and	
  the	
  traction	
  and	
  maximize	
  the	
  performance	
  of	
  
the	
  overall	
  machine.	
  For	
  future	
  reference,	
  I	
  would	
  keep	
  in	
  mind	
  the	
  potential	
  weaknesses	
  of	
  the	
  final	
  
design	
  of	
  the	
  robot.	
  For	
  instance,	
  the	
  wheels	
  are	
  located	
  at	
  the	
  sides	
  of	
  the	
  base,	
  this	
  makes	
  the	
  robot	
  
more	
  susceptible	
  to	
  attacks,	
  and	
  if	
  the	
  opponent	
  was	
  to	
  attack	
  the	
  wheels,	
  the	
  robot	
  would	
  be	
  
completely	
  dysfunctional	
  and	
  incompetent	
  to	
  score.	
  Overall,	
  the	
  robot	
  is	
  very	
  simplistic	
  and	
  reliable,	
  
Wu	
  Wong	
  8	
  
	
  
however	
  it	
  is	
  not	
  most	
  efficient.	
  Because	
  it	
  mainly	
  relies	
  on	
  the	
  drivetrain	
  to	
  deliver	
  the	
  balls	
  from	
  the	
  
platform	
  to	
  the	
  goalie,	
  it	
  requires	
  a	
  lot	
  of	
  control	
  and	
  maneuvering	
  .	
  Unless	
  the	
  team	
  members	
  are	
  very	
  
familiar	
  controlling	
  the	
  robot,	
  it	
  won’t	
  likely	
  get	
  all	
  of	
  the	
  balls	
  (including	
  the	
  yellow	
  ones).	
  
Nevertheless	
  it	
  has	
  been	
  constantly	
  performing	
  great	
  overall,	
  scoring	
  approximately	
  12	
  points	
  each	
  
time.	
  	
  
	
  
	
  
	
  
	
  
	
  

More Related Content

Viewers also liked

Are You Truly Engaging Your Audience and Visitors?
Are You Truly Engaging Your Audience and Visitors?Are You Truly Engaging Your Audience and Visitors?
Are You Truly Engaging Your Audience and Visitors?
GEVME
 
Boss biz (3)
Boss biz (3)Boss biz (3)
Boss biz (3)
ciptosukses
 
Yes, You Do Have a Crystal Ball: Business Megatrends Impacting HR
Yes, You Do Have a Crystal Ball: Business Megatrends Impacting HRYes, You Do Have a Crystal Ball: Business Megatrends Impacting HR
Yes, You Do Have a Crystal Ball: Business Megatrends Impacting HR
Human Capital Media
 
A Slap In The Face To The Future First Lady - Written by MarieAnna Dvorak
A Slap In The Face To The Future First Lady - Written  by MarieAnna DvorakA Slap In The Face To The Future First Lady - Written  by MarieAnna Dvorak
A Slap In The Face To The Future First Lady - Written by MarieAnna Dvorak
Emmy Award-Winning Filmmaker Ken Kimmelman and Imagery Film Ltd
 
Formal proposal
Formal proposalFormal proposal
Formal proposal
Diana Wu Wong
 
SANDEEP RESUME 7
SANDEEP RESUME 7SANDEEP RESUME 7
SANDEEP RESUME 7
Sandeep Dahiya
 
Lowering cholesterol with benecol innovations in Korea
Lowering cholesterol with benecol innovations in KoreaLowering cholesterol with benecol innovations in Korea
Lowering cholesterol with benecol innovations in Korea
Business Finland
 
ibm...SM Presentationn(Final)
ibm...SM Presentationn(Final)ibm...SM Presentationn(Final)
ibm...SM Presentationn(Final)
- Freelance
 
Success Clinic
Success ClinicSuccess Clinic
Success Clinic
Business Finland
 
Bio similar- An opportunities or challenge for Indian Company
Bio similar- An opportunities or challenge for Indian Company Bio similar- An opportunities or challenge for Indian Company
Bio similar- An opportunities or challenge for Indian Company
Debashish Kar
 
IBM - 2016 - Retail Industry Solutions Guide
IBM - 2016 - Retail Industry Solutions GuideIBM - 2016 - Retail Industry Solutions Guide
IBM - 2016 - Retail Industry Solutions Guide
Francisco González Jiménez
 
Future of media
Future of mediaFuture of media
Future of media
Marketing Media Review
 
Compact city
Compact cityCompact city
Compact city
Yasser Al-Rijjal
 
Technology Best Practices: The When, Why How for Implementing Technology Solu...
Technology Best Practices: The When, Why How for Implementing Technology Solu...Technology Best Practices: The When, Why How for Implementing Technology Solu...
Technology Best Practices: The When, Why How for Implementing Technology Solu...
Billhighway
 

Viewers also liked (14)

Are You Truly Engaging Your Audience and Visitors?
Are You Truly Engaging Your Audience and Visitors?Are You Truly Engaging Your Audience and Visitors?
Are You Truly Engaging Your Audience and Visitors?
 
Boss biz (3)
Boss biz (3)Boss biz (3)
Boss biz (3)
 
Yes, You Do Have a Crystal Ball: Business Megatrends Impacting HR
Yes, You Do Have a Crystal Ball: Business Megatrends Impacting HRYes, You Do Have a Crystal Ball: Business Megatrends Impacting HR
Yes, You Do Have a Crystal Ball: Business Megatrends Impacting HR
 
A Slap In The Face To The Future First Lady - Written by MarieAnna Dvorak
A Slap In The Face To The Future First Lady - Written  by MarieAnna DvorakA Slap In The Face To The Future First Lady - Written  by MarieAnna Dvorak
A Slap In The Face To The Future First Lady - Written by MarieAnna Dvorak
 
Formal proposal
Formal proposalFormal proposal
Formal proposal
 
SANDEEP RESUME 7
SANDEEP RESUME 7SANDEEP RESUME 7
SANDEEP RESUME 7
 
Lowering cholesterol with benecol innovations in Korea
Lowering cholesterol with benecol innovations in KoreaLowering cholesterol with benecol innovations in Korea
Lowering cholesterol with benecol innovations in Korea
 
ibm...SM Presentationn(Final)
ibm...SM Presentationn(Final)ibm...SM Presentationn(Final)
ibm...SM Presentationn(Final)
 
Success Clinic
Success ClinicSuccess Clinic
Success Clinic
 
Bio similar- An opportunities or challenge for Indian Company
Bio similar- An opportunities or challenge for Indian Company Bio similar- An opportunities or challenge for Indian Company
Bio similar- An opportunities or challenge for Indian Company
 
IBM - 2016 - Retail Industry Solutions Guide
IBM - 2016 - Retail Industry Solutions GuideIBM - 2016 - Retail Industry Solutions Guide
IBM - 2016 - Retail Industry Solutions Guide
 
Future of media
Future of mediaFuture of media
Future of media
 
Compact city
Compact cityCompact city
Compact city
 
Technology Best Practices: The When, Why How for Implementing Technology Solu...
Technology Best Practices: The When, Why How for Implementing Technology Solu...Technology Best Practices: The When, Why How for Implementing Technology Solu...
Technology Best Practices: The When, Why How for Implementing Technology Solu...
 

Similar to Individual Robot Analysis Final

IRJET- Design and Fabrication of Multi Legged Robot
IRJET-  	  Design and Fabrication of Multi Legged RobotIRJET-  	  Design and Fabrication of Multi Legged Robot
IRJET- Design and Fabrication of Multi Legged Robot
IRJET Journal
 
VEX Robotics - Technical Journal
VEX Robotics - Technical JournalVEX Robotics - Technical Journal
VEX Robotics - Technical Journal
Joseph Han
 
VT PYREX RoboOps 2014 Final Report
VT PYREX RoboOps 2014 Final ReportVT PYREX RoboOps 2014 Final Report
VT PYREX RoboOps 2014 Final Report
Christopher Gumm
 
Tire Arm Process Documentation
Tire Arm Process DocumentationTire Arm Process Documentation
Tire Arm Process Documentation
Daniel Bondarenko
 
Team254_TechnicalBinder_2015_Final
Team254_TechnicalBinder_2015_FinalTeam254_TechnicalBinder_2015_Final
Team254_TechnicalBinder_2015_Final
Andrew Torrance
 
Autonomous Roving Vehicle
Autonomous Roving Vehicle Autonomous Roving Vehicle
Autonomous Roving Vehicle
Travis Heidrich
 
MAE 106 Final Project Report
MAE 106 Final Project ReportMAE 106 Final Project Report
MAE 106 Final Project Report
Daniella Lopez
 
MAE106FinalReport
MAE106FinalReportMAE106FinalReport
MAE106FinalReport
Kenny Lei
 
Ag xri ppt presentation 1
Ag xri ppt presentation 1Ag xri ppt presentation 1
Ag xri ppt presentation 1
Don Bogardus
 
IRJET- Dynamic Analysis of the Front and Rear Suspension System of an All...
IRJET-  	  Dynamic Analysis of the Front and Rear Suspension System of an All...IRJET-  	  Dynamic Analysis of the Front and Rear Suspension System of an All...
IRJET- Dynamic Analysis of the Front and Rear Suspension System of an All...
IRJET Journal
 
Grubb Portfolio 2023.pdf
Grubb Portfolio 2023.pdfGrubb Portfolio 2023.pdf
Grubb Portfolio 2023.pdf
CorbinGrubb
 
Design and Fabrication of Staircase Climbing Robot
Design and Fabrication of Staircase Climbing RobotDesign and Fabrication of Staircase Climbing Robot
Design and Fabrication of Staircase Climbing Robot
IRJET Journal
 
Team Contract 1- Team’s purpose· To enhance the look of the.docx
Team Contract 1- Team’s purpose· To enhance the look of the.docxTeam Contract 1- Team’s purpose· To enhance the look of the.docx
Team Contract 1- Team’s purpose· To enhance the look of the.docx
mattinsonjanel
 
ANDROID BASED AUTOMATED SMART WHEELCHAIR
ANDROID BASED AUTOMATED SMART WHEELCHAIRANDROID BASED AUTOMATED SMART WHEELCHAIR
ANDROID BASED AUTOMATED SMART WHEELCHAIR
shashank tiwari
 
J012336467
J012336467J012336467
J012336467
IOSR Journals
 
Km223 rocker bogie mechanism machine
Km223 rocker bogie mechanism machineKm223 rocker bogie mechanism machine
Km223 rocker bogie mechanism machine
1000kv technologies
 
Hover board
Hover boardHover board
Hover board
mohit1994220494
 
HPV Construction_reduced
HPV Construction_reducedHPV Construction_reduced
HPV Construction_reduced
Matt Sullivan
 
Design and Development of H-Frame with Lateral Link Suspension for an All Ter...
Design and Development of H-Frame with Lateral Link Suspension for an All Ter...Design and Development of H-Frame with Lateral Link Suspension for an All Ter...
Design and Development of H-Frame with Lateral Link Suspension for an All Ter...
IRJET Journal
 
Treadmill Bicycle
Treadmill BicycleTreadmill Bicycle
Treadmill Bicycle
IRJET Journal
 

Similar to Individual Robot Analysis Final (20)

IRJET- Design and Fabrication of Multi Legged Robot
IRJET-  	  Design and Fabrication of Multi Legged RobotIRJET-  	  Design and Fabrication of Multi Legged Robot
IRJET- Design and Fabrication of Multi Legged Robot
 
VEX Robotics - Technical Journal
VEX Robotics - Technical JournalVEX Robotics - Technical Journal
VEX Robotics - Technical Journal
 
VT PYREX RoboOps 2014 Final Report
VT PYREX RoboOps 2014 Final ReportVT PYREX RoboOps 2014 Final Report
VT PYREX RoboOps 2014 Final Report
 
Tire Arm Process Documentation
Tire Arm Process DocumentationTire Arm Process Documentation
Tire Arm Process Documentation
 
Team254_TechnicalBinder_2015_Final
Team254_TechnicalBinder_2015_FinalTeam254_TechnicalBinder_2015_Final
Team254_TechnicalBinder_2015_Final
 
Autonomous Roving Vehicle
Autonomous Roving Vehicle Autonomous Roving Vehicle
Autonomous Roving Vehicle
 
MAE 106 Final Project Report
MAE 106 Final Project ReportMAE 106 Final Project Report
MAE 106 Final Project Report
 
MAE106FinalReport
MAE106FinalReportMAE106FinalReport
MAE106FinalReport
 
Ag xri ppt presentation 1
Ag xri ppt presentation 1Ag xri ppt presentation 1
Ag xri ppt presentation 1
 
IRJET- Dynamic Analysis of the Front and Rear Suspension System of an All...
IRJET-  	  Dynamic Analysis of the Front and Rear Suspension System of an All...IRJET-  	  Dynamic Analysis of the Front and Rear Suspension System of an All...
IRJET- Dynamic Analysis of the Front and Rear Suspension System of an All...
 
Grubb Portfolio 2023.pdf
Grubb Portfolio 2023.pdfGrubb Portfolio 2023.pdf
Grubb Portfolio 2023.pdf
 
Design and Fabrication of Staircase Climbing Robot
Design and Fabrication of Staircase Climbing RobotDesign and Fabrication of Staircase Climbing Robot
Design and Fabrication of Staircase Climbing Robot
 
Team Contract 1- Team’s purpose· To enhance the look of the.docx
Team Contract 1- Team’s purpose· To enhance the look of the.docxTeam Contract 1- Team’s purpose· To enhance the look of the.docx
Team Contract 1- Team’s purpose· To enhance the look of the.docx
 
ANDROID BASED AUTOMATED SMART WHEELCHAIR
ANDROID BASED AUTOMATED SMART WHEELCHAIRANDROID BASED AUTOMATED SMART WHEELCHAIR
ANDROID BASED AUTOMATED SMART WHEELCHAIR
 
J012336467
J012336467J012336467
J012336467
 
Km223 rocker bogie mechanism machine
Km223 rocker bogie mechanism machineKm223 rocker bogie mechanism machine
Km223 rocker bogie mechanism machine
 
Hover board
Hover boardHover board
Hover board
 
HPV Construction_reduced
HPV Construction_reducedHPV Construction_reduced
HPV Construction_reduced
 
Design and Development of H-Frame with Lateral Link Suspension for an All Ter...
Design and Development of H-Frame with Lateral Link Suspension for an All Ter...Design and Development of H-Frame with Lateral Link Suspension for an All Ter...
Design and Development of H-Frame with Lateral Link Suspension for an All Ter...
 
Treadmill Bicycle
Treadmill BicycleTreadmill Bicycle
Treadmill Bicycle
 

Individual Robot Analysis Final

  • 1.                         Individual  Robot  Analysis     Diana  Wu  Wong     A98066631   Team  4:  Jaeger     Component:  Friction  Drivetrain   MAE3  Section  A01   T.A  Howard  Tai          
  • 2. Wu  Wong  1     Part  I:  Description  of  Components.   Overview  of  “Gypsy  Danger”               Initial  Position  View                                         The  robot,  Gypsy  Danger,  fits  to  the  10x10x10  inches  constraint  and  it  is  created  to  carry  balls  from  a  10-­‐ inch-­‐high  elevated  platform  to  a  5-­‐inch-­‐high  elevated  goalie  within  a  20  inches  distance.  This  robot  was  designed   to  drive,  lift  its  upper  base,  extend  its  arm  to  reach  behind  the  balls  on  the  elevated  platform  and  retract  back  its   arm  so  that  the  ball  rests  on  the  upper  platform.  It  would,  then,  drive  back  to  the  elevated  goalie  and  release  the   ball.  The  robot  mainly  consists  of  3  components:  the  base  with  two  friction  drives  powered  by  high-­‐speed   motors,  a  lift  that  elevates  the  upper  platform  up  to  5  inches  higher  than  the  limited  height  and  an  extendable   arm  that  extends  up  to  7  inches  long.  The  friction  drives  provide  great  mobility  on  high  speed.  It  allows  very   sharp  turns,  it  is  able  to  turn  360  degrees,  and  move  forwards  and  backwards  on  a  straight  line.  The  lift  allows   the  upper  platform  to  elevate  to  the  needed  height  for  the  arm  reach  the  balls  when  extended.  At  its  maximum   height,  it  can  help  the  arm  to  reach  the  yellow  ball,  which  are  often  inaccessible  for  most  robots  seen.     Fully  Extended  View                                                                                                                                                                                                                                                                                                                  
  • 3. Wu  Wong  2     Component  Overview:  Friction  Drivetrain     The  robot  drives  around  using  a  classic  friction  drivetrain  attached  to  both  sides  of  the  base.  There   are  a  total  of  4  3-­‐inch-­‐diameter  wheels  with  O-­‐Rings  in  the  back  wheels  to  help  provide  friction.  While  most   friction  drivetrains  use  rubber  bands  on  the  back  wheels,  we  decided  to  substitute  them  with  O-­‐Rings   secured  with  hot  glue  since  rubber  bands  wore  out  faster.  The  drivetrain  is  powered  by  2  high-­‐speed   motors  mounted  on  “mounters”  and  pressed  onto  the  back-­‐wheels  with  the  force  of  springs  to  help  provide   friction  and  prevent  the  wheels  from  slipping.   The  base  also  includes  a  6x2x2.5  inches  acrylic  box  that  fits  underneath  both  motors  to  help   prevent  the  motors  from  tilting  inwards  and  slipping  away   from  the  back  wheels.  The  box  also  secures  both  motors  to  the   same  height  so  that  the  force  pressing  the  motor  to  the  wheels   is  equivalent  on  both  sides.  This  helps  the  wheels  to  spin  at  the   same  rate  and  makes  sure  that  the  robot  moves  forward  and   backwards  in  a  straight  line.     o Minimum  Set  of  Functional  Requirements:     -­‐ Robot  must  be  able  to  move  back  and  forwards  straight.   -­‐ Robot  must  be  able  to  support  the  weight  of  the  robot.     -­‐ Robot  must  fit  within  the  10x10x10  bounded  area.   -­‐ Robot  must  be  able  to  travel  20  inches  within  5  seconds.     -­‐ Robot  must  be  able  to  stop  efficiently     -­‐ Robot  must  be  reliable.     -­‐ No  slipping.       o Design  Solutions  Considered     There  were  many  different  diameters  of  wheels  tested  to  help  achieve  the  ideal  drivetrain  that   would  provide  enough  force  to  carry  the  weight  of  the  entire  robot  and  ensure  it  travels  the  required   distance  within  a  limited  time.    Larger  wheels  provide  larger  force  and  torque  to  the  drivetrain  and   make  it  more  powerful  and  reliable,  while  smaller  wheels  help  sharper  turns  and  faster  mobility.  The   decision  came  down  between  5-­‐inch-­‐diameter  wheels  and  3-­‐inch-­‐diameter  wheels.  While  larger  wheels   were  more  preferable,  because  of  the  nature  of  the  design,  the  5-­‐inch-­‐diameter  wheels  would  not  have   enough  constraints  and  they  would  start  to  wobble  eventually  slipping  the  high-­‐speed  motor  off.  We  
  • 4. Wu  Wong  3     decided  to  use  the  3-­‐inch-­‐diameter  wheel  and  sacrifice  power  and  torque  for  a  more  reliable  drivetrain   that  would  fulfill  our  functional  requirements.     o Summary  of  the  Component   The  drivetrain  is  moderately  reliable.  It  has  worked  80%  of  the  time  at  its  best.  Its  speed  is   extremely  high  and  it’s  turns  are  very  efficient.  The  resulting  speed,  measured  from  timing  the  robot,   was  about  20  inches  in  3  seconds,  which  outdid  the  expected  speed  (comparison  and  analysis  on  the   measurements  will  be  provided  in  the  later  sections  of  the  report).  Most  importantly,  it  was  still  able   the  weight  of  the  robot  with  a  diligent  matter,  without  affecting  much  its  speed.  The  product  did  not   only  fulfill  the  functional  requirements  set  at  the  beginning  of  the  design,  but  also  exceeded  them  from   the  result  its  performance.     Part  II:  Project  Management  Reflection-­‐  Concept  Generation  and  Creativity.     On  week  4  Dr.  Delson  assigned  us  the  Individual  Concept  Generation  Assignment.    Each  person  was   to  come  up  with  4  designs  prior  to  meeting  up  with  the  team.  There  were  16  different  designs,  ranging   from  ball  shooters,  nets,  and  claws.  However,  the  most  important  and  hardest  part  of  this  project  was  to   have  4  people  to  agree  on  one  single  design  out  of  16  of  them.  The  design  must  fit  within  the  10x10x10  inch   boundary.  It  must  be  able  to  deliver  balls  from  a  10-­‐inch-­‐high  elevated  platform  across  a  20  inches  long   field  to  a  5-­‐inch-­‐high  elevated  goalie,  not  to  mention  the  15-­‐inch-­‐high  yellow  balls  in  the  middle  of  the   platform.  We  came  to  a  group  understanding  that  components  of  the  robot  must  be  able  to  expand  long   enough  to  be  able  to  reach  the  yellow  balls  at  most  and  mobile  to  deliver  the  balls  to  the  goalie.  We   evaluated  each  design’s  pros  and  cons  with  the  help  of  the  Pugh  Chart  and  chose  a  design  with  components   from  various  team  members’  designs.     However  the  final  design  was  a  completely  different  design  that  did  not  resemble  from  any  of  the   previous  designs.  Instead  of  using  fish  strings  and  foldable  arms,  which  were  frequently  overlapped  in  the   concept  generation  assignments,  our  team  designed  an  arm  that  would  fit  in  the  box  and  extend  vertically   through  a  gear  attached  to  a  geared-­‐motor.  Although  this  design  would  extend  long  enough  to  cover  the   width  of  the  elevated  platform  and  reach  for  both  the  white  balls  and  yellow  balls,  it  wasn’t  high  enough  to   reach  the  platform.  Therefore  we  decided  to  include  a  lift  that  would  help  elevate  the  upper  platform  where   the  arm  was  placed  to  help  achieve  the  needed  height  to  reach  the  yellow  balls.  Our  original  design  also   included  a  ramp  that  would  connect  from  the  platform  to  the  goalie,  however  this  design  was  omitted  2   weeks  before  the  presentation  of  the  finalized  product  since  we  discovered  that  although  the  design  of  the   ramp  would  facilitate  delivering  the  ball  from  the  platform  straight  to  the  goalie,  it  constraint  the  robot  and   it  couldn’t  reach  some  of  the  balls.     Although  in  the  end,  we  didn’t  choose  the  design  that  the  Pugh  Chart  helped  us  narrow  down  to,  we   still  view  it  as  one  of  the  most  critical  parts  of  the  process  for  generating  our  design.  Through  this  process   we  were  able  to  learn  to  communicate  as  a  team  and  reach  a  common  understanding  of  what  our  design   emphasis  should  be:  Simplicity,  Efficiency  and  Reliable.  These  values  were  carried  on  to  the  generation  of   our  final  design  that  became  very  simplistic,  but  highly  reliable.  This  method  will  definitely  be  carried  on  to   my  future  design  projects,  as  it  was  one  of  the  most  valuable  process  that  involving  the  unification  of  the   team  and  the  product  of  an  optimal  design.            
  • 5. Wu  Wong  4     Part  III:  Analysis  of  the  Component     o Objective  of  Analysis     The  objective  of  this  analysis  is  to  predict  whether  the  robot  will  be  able  to  travel  in  its  expected   carrying  the  weight  of  the  robot  and  what  its  maximum  pushing  force  is.  This  analysis  can  help  predict   the  size  of  the  back  wheel  needed  to  achieve  the  time  without  slipping.  The  bigger  the  wheel  is,  the   more  reliable  the  drivetrain  is,  however  it  will  also  be  slower.  The  goal  is  to  balance  between  the   reliability  and  speed  and  also  identify  at  what  pushing  force  the  wheels  will  begin  to  slip.     o Free  Body  Diagram:  Friction  Drivetrain     FBD  for  Traction  Limiting  Case                                                        Back  Wheel  and  Motor  Shaft  FBD  for  Motor  Stall  Analysis                                     o Energy  Analysis     Assumptions:       -­‐ The  mass  is  concentrated  at  one  point  in  order  to  facilitate  the  calculations.     -­‐ There  is  no  slipping  between  the  wheels  and  the  ground  to  assume  the  maximum  efficiency  of   the  drivetrain.     -­‐ Energy  lost  due  to  friction  is  minimal  and  negligible.     -­‐ The  robot  is  moving  at  constant  acceleration.     The  energy  source  of  the  drivetrain  is  two  high-­‐speed  motors  mounted  on  each  side  of  the  back   wheels.  The  energy  is  transferred  to  the  wheels  by  a  spring  that  pushed  the  motors  against  the  back  wheels   and  ensure  the  friction  needed  to  keep  the  motors  from  slipping.  It  is  believed  that  the  high-­‐speed  motors   will  provide  enough  torque  to  spin  the  wheels  up  to  the  expected  speed.     Linear  motion  involves  kinetic  energy  of  the  horizontal  distance  traveled  by  the  robot.  In  order  to   determine  the  needed  energy,  the  kinetic  energy  will  be  calculated  from  the  information  available.    
  • 6. Wu  Wong  5     𝐾𝑖𝑛𝑒𝑡𝑖𝑐  𝐸𝑛𝑒𝑟𝑔𝑦 =   1 2  𝑚 ∙ 𝑉!   The  velocity  is  found  by  the  equation     𝑉!"#$!%# = 𝐿 𝑡 = 20 5 = 4  𝑖𝑛𝑐ℎ/ sec  (0.1016 𝑚 𝑠 )   The  initial  velocity  of  the  robot  will  be  at  rest.  So  ideally  the  robot  will  achieve  a  velocity  of   𝑉!"#  within  the   5  second  periods  of  acceleration  so  that   𝑉!"#$!%#  =  4  inch/sec.     𝑉!"# + 𝑉!   0 2 =   𝑉!"#   𝑉!"# = 2𝑉!"# = 8  𝑖𝑛𝑐ℎ/ sec 0.203 𝑚 𝑠   Inserting  the  newly-­‐found  variables  into  the  main  equation:     𝐾𝑖𝑛𝑒𝑡𝑖𝑐  𝐸𝑛𝑒𝑟𝑔𝑦 =   1 2  𝑚 ∙ 𝑉!"# ! = 1 2   1.347  𝑘𝑔 ∙ 0.203 𝑚 𝑠 ! = 0.0278  𝐽   Therefore  the  Kinetic  Energy  for  60s  contest  is  1.67  J.  To  ensure  the  feasibility  of  moving  the  car  for  the   distance,  the  factor  of  safety  must  be  taken  into  account.     The  maximum  amount  of  energy  for  60  seconds  for  the  high-­‐speed  motor  is  77.37  J.  This  value  is  provided   by  the  MAE3  Website.  However  the  energy  is  provided  by  2  high-­‐speed  motors,  therefore  the  energy   available  is  154.74  J  in  total.      𝐹. 𝑆  𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑛𝑒𝑟𝑔𝑦!"!#$!%$&/𝐾. 𝐸 =     !"#.!  ! !.!"  ! = 92.66     The  power  needed  to  generate  the  kinetic  energy  in  60  seconds.     𝑃!"#$%!"& = 𝐾. 𝐸 𝑡 =  2.578   The  factor  of  safety  power  is  calculated  as  follows     𝐹. 𝑆  𝑃𝑜𝑤𝑒𝑟 =   𝑃!"!#$!%$& 𝑃!"#$%!"& =   2.58 0.028 = 92.14   Although  the  Energy  Analysis  doesn’t  ensure  that  the  drivetrain  will  definitely  succeed,  it  does  provide  a   general  prediction  of  the  whether  it  is  possible  to  work.  From  the  high  values  of  Factor  of  Safety,  it  seems   that  the  drivetrain  is  highly  likely  to  perform  its  task.   o Force/Torque  Analysis:   -­‐Traction  Limiting  Case:  At  what  force  the  wheels  begin  to  slip.     Assumptions:     -­‐ Quasi-­‐static  Analysis.  All  forces  are  treated  as  static.     -­‐ Neglect  friction  of  the  wheel  bearing     -­‐ Friction  between  rubber  and  cardboard,  instead  of  O-­‐rings-­‐plastic,  as  the  closest  value  found  on   the  internet.    
  • 7. Wu  Wong  6     -­‐ Center  of  mass  is  off-­‐centered  because  the  weight  is  mainly  distributed  at  the  back  portion  of   the  robot.     -­‐ The  friction  of  the  bearing  on  the  wheels  is  small  enough  to  be  neglected.     Variables:     a  (estimated  distance  back  wheel  to  center  of  mass)  =2.5  inch=0.0635  m   b  (estimated  distance  front  wheel  to  center  of  mass)  =3.5  inch=  0.0889  m     𝜇  (coefficient  of  friction    rubber-­‐cardboard)=0.65   m  (mass  of  the  entire  robot)  =  1.347  kg   Calculations:         Σ𝐹! = 0                   𝐹!"#$!%&' − 𝐹!"#! = 0         Σ𝐹! = 0                   𝑅!"#$ − 𝑅!"#$% = 0   Σ𝑀! = 0                   𝑚 𝑔𝑏 − 𝑅!"#$(𝑎 + 𝑏) = 0                 𝑅!"#$ = !"# !!!   Therefore  the  maximum  traction  force  happens  when   𝐹!"#$!%&',!"# =  𝜇𝑁     N=  normal  force=𝑅!"#$%     µ=  Coefficient  of  friction     Therefore   𝐹!"#$!%&',!"# = 𝜇𝑅!"#$% = !"#$ !!! = 5  𝑁   -­‐Motor  Torque  Analysis:  At  what  Force  will  the  Motor  Stall?     Assumptions:     -­‐ Traction  is  strong  enough  so  that  the  wheels  don’t  slip     -­‐ Quasi-­‐static  Analysis     -­‐ Neglect  friction  of  the  wheel  bearing   Variables:     𝜏!  (torque  of  the  motor)=  0.012  Nm   𝑟!!!!"=  1.5  inches=  0.0381  m    Calculations:     Σ𝐹! = 0                   𝐹!"#$!%&' − 𝑅!"#$ = 0         Σ𝐹! = 0                   𝑅!"#$ − 𝐴! = 0   Σ𝑀! = 0                   𝐹!"#$!%&' 𝑟!!!!" − 𝜏! = 0   Therefore       𝐹!"#$!%&' = !! !   Maximum  pushing  force  happens  at  stall  torqueà   𝜏! =   𝜏!"#$$  
  • 8. Wu  Wong  7     Since  there  are  motors  on  both  sides  of  the  car     𝐹!"#$!%&' = !!!"#$$ ! =   !(!.!"#) !.!"#$ = 6.30  𝑁     o Measurement  of  Component  Performance:     Equations  used:   𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝐸𝑟𝑟𝑜𝑟 =   𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙  ×100%   The  velocity  of  the  drivetrain  was  measured  by  timing  the  amount  of  time  the  robot  took  to  travel   10  inches.  This  method  simply  used  a  timer  to  time  the  robot  while  in  a  straight  line  for  10  inches.     The  resulting  measurements  were  10  inches  in  1.5  seconds  (0.169  m/s).  Compared  to  the  ideal   speed  from  the  functional  requirement  of  the  robot  (20  inches  in  5  seconds,  0.1016  m/s),  the  robot  was   40%  faster  than  the  expected  speed,  which  means  that  we  have  highly  underestimated  the  potential   velocity  of  this  robot.  However  the  expected  velocity  was  a  value  that  was  set  by  the  team  as  a  functional   requirement  for  the  robot,  the  fact  that  the  actual  speed  outdid  the  expected  velocity  is  highly  beneficial  for   the  robot.     𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝐸𝑟𝑟𝑜𝑟 =   0.1016 − 0.169 0.169  ×100% = 39.9% = ~40%   The  pushing  force  was  measured  by  attaching  a  force  gauche  to  the  back  of  the  robot  and  holding   the  other  end  of  the  gauche  while  the  robot  drove  straight.  The  same  result  was  given  by  driving  the  robot   into  the  force  gauche  until  the  robot  couldn’t  move  further.   The  resulting  measurement  was  8  N  of  pushing  force.  Compared  to  the  estimated  result  from  the   Force  Analysis  from  the  previous  section  (6.3N  and  5N),  the  actual  pushing  force  was  underestimated  by   21.3%  and  37.5%  respectively.  There  are  several  factors  that  might  have  resulting  such  great  percentage  of   error,  however  the  most  attributed  factor  in  this  case  would  be  the  coefficient  of  friction  used.  Given  the   limited  amount  of  material  combination  for  coefficient  of  friction  provided  by  the  internet,  the  closest   material  combination  that  was  found  was  rubber-­‐cardboard  coefficient  of  friction  which  ranges  from  0.4  to   0.8.  As  a  result,  a  coefficient  of  friction  of  0.65  was  chosen  to  input  in  the  calculations,  in  order  to  minimize   the  inaccuracy.  However,  the  this  value  is  still  highly  inaccurate  since  the  coefficient  of  friction  of  the  actual   material  (O-­‐rings  and  Acrylic)  is  still  unknown.     𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝐸𝑟𝑟𝑜𝑟 =   6.3 − 8 8  ×100% = 21.3%              𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝐸𝑟𝑟𝑜𝑟 =   5 − 8 8  ×100% = 37.5%     o Conclusion:     The  Energy  Analysis  predicts  that  the  drivetrain  might  work,  however  it  does  not  ensure  that  it  will.   On  the  other  hand,  the  Force  Analysis  gave  us  a  general  idea  of  the  amount  of  pushing  force  that  will   make  the  wheels  slip  or  the  motor  stall.  From  these  analysis,  we  were  able  to  make  adjustments  to  the   component  in  order  to  increase  the  pushing  force  and  the  traction  and  maximize  the  performance  of   the  overall  machine.  For  future  reference,  I  would  keep  in  mind  the  potential  weaknesses  of  the  final   design  of  the  robot.  For  instance,  the  wheels  are  located  at  the  sides  of  the  base,  this  makes  the  robot   more  susceptible  to  attacks,  and  if  the  opponent  was  to  attack  the  wheels,  the  robot  would  be   completely  dysfunctional  and  incompetent  to  score.  Overall,  the  robot  is  very  simplistic  and  reliable,  
  • 9. Wu  Wong  8     however  it  is  not  most  efficient.  Because  it  mainly  relies  on  the  drivetrain  to  deliver  the  balls  from  the   platform  to  the  goalie,  it  requires  a  lot  of  control  and  maneuvering  .  Unless  the  team  members  are  very   familiar  controlling  the  robot,  it  won’t  likely  get  all  of  the  balls  (including  the  yellow  ones).   Nevertheless  it  has  been  constantly  performing  great  overall,  scoring  approximately  12  points  each   time.              
  翻译: